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Experimentson the Application of I OHMMs
to Model Financial Returns Series

Yoshua Bengio', Vincent-Philippe Lauzon*, and Réean Ducharme®

Résumé/ Abstract:

"Input/Output Hidden Markov Models' (IOHMMs) sont des modéles de Markov cachés
pour lesquels les probabilités d'émission (et possiblement de transition) peuvent dépendre d'une
séguence dentrée. Par exemple, ces distributions conditionnelles peuvent étre linéaires,
logistiques, ou non-linéaires (utilisant, par exemple, une réseau de neurones multi-couches).
Nous comparons les performances de généralisation de plusieurs modéles qui sont des cas
particuliers de IOHMMs pour des problemes de prédiction de séries financieres : une gaussienne
inconditionnelle, une gaussienne linéaire conditionnelle, une mixture de gaussiennes, une mixture
de gaussiennes linéaires conditionnelles, un modéle de Markov caché, et divers IOHMMs. Les
expériences comparent ces modéles sur leurs prédictions de la densité conditionnelle des
rendements des indices sectoriels et du marché. Notons qu'une gaussienne inconditionnelle estime
le premier moment avec une moyenne historique. Les résultats montrent que, méme s la
moyenne historique donne les meilleurs résultats pour le premier moment, pour les moments
d'ordres supérieurs les IOHMMs performent significativement mieux, comme estimé par la
vraisemblance hors-échantillon.

Input/Output Hidden Markov Models (IOHMMs) are conditional hidden Markov models
in which the emission (and possibly the transition) probabilities can be conditioned on an input
sequence. For example, these conditional distributions can be linear, logistic, or non-linear
(using for example multi-layer neural networks). We compare the generalization performance of
several models which are special cases of Input/Output Hidden Markov Models on financial time-
series prediction tasks: an unconditional Gaussian, a conditional linear Gaussian, a mixture of
Gaussians, a mixture of conditional linear Gaussians, a hidden Markov model, and various
IOHMMSs. The experiments compare these models on predicting the conditional density of returns
of market and sector indices. Note that the unconditional Gaussian estimates the first moment
with the historical average. The results show that, although for the first moment the historical
average gives the best results, for the higher moments, the IOHMMs yielded significantly better
performance, as estimated by the out-of-sample likelihood.

Mots clés: Modéles de Markov cachés, IOHMM, sériesfinancieres, volatilité
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1 Introduction

Hidden Markov Models (HMMSs) are statistical models of sequential data that have been used
successfully in many machine learning applications, especially for speech recognition. In recent
years, HMMs have been applied to a variety of applications outside of speech recognition, such
as handwriting recognition (Nag, Wong and Fallside, 1986; Kundu and Bahl, 1988; Matan
et al., 1992; Ha et al., 1993; Schenkel et al., 1993; Schenkel, Guyon and Henderson, 1995;
Bengio et al., 1995), pattern recognition in molecular biology (Krogh et al., 1994; Baldi
et al.; 1995; Chauvin and Baldi, 1995; Karplus et al., 1997; Baldi and Brunak, 1998), and
fault-detection (Smyth, 1994). Input-Output Hidden Markov Models (IOHMMs) (Bengio and
Frasconi, 1995; Bengio and Frasconi, 1996) (or Conditional HMMs) are HMMs for which the
emission and transition distributions are conditional on another sequence, called the input
sequence. In that case, the observations modeled with the emission distributions are called
outputs, and the model represents the conditional distribution of an output sequence given
an input sequence. In this paper we will apply synchronous IOHMMSs, for which input and
output sequences have the same length. See (Bengio and Bengio, 1996) for a description of
asynchronous IOHMMs, and see (Bengio, 1996) for a review of Markovian models in general
(including HMMs and IOHMMs), and (Cacciatore and Nowlan, 1994) for a form of recurrent
mixture of experts similar to IOHMMs.

An IOHMM is a probabilistic model with a chosen fixed number of states corresponding
to different conditional distributions of the output variables given the input variables, and
with transition probabilities between states that can also depend on the input variables. In
the unconditional case, we obtain a Hidden Markov Model (HMM). An IOHMM can be
used to predict the conditional density (which includes the expected values as well as higher
moments) of the output variables given the current input variables and the past input/output
pairs. The most likely state sequence corresponds to a segmentation of the past sequence into
regimes (each one associated to one conditional distribution, i.e., to one state), which makes
it attractive to model financial or economic data in which different regimes are believed to
have existed.

Previous work on using Markov models to represent the non-stationarity in economic
and financial time-series due to the business cycle are promising (Hamilton, 1989; Hamilton,
1988) and have generated a lot of interest and generalizations (Diebold, Lee and Weinbach,
1993; Garcia and Perron, 1995; Garcia and Schaller, 1995; Garcia, 1995; Sola and Driffill,
1994; Hamilton, 1996; Krolzig, 1997). In the experiments described here, the conditional
dependency is not restricted to an affine form but includes non-linear models such as multi-
layer artificial neural networks. Artificial neural networks have already been used in many
financial and economic applications (see for example (Moody, 1998) for a survey), including
to model some components of the business cycle (Bramson and Hoptroff, 1990; Moody, Levin
and Rehfuss, 1993), but not using an IOHMM or conditional Markov-switching model. The
main contribution of this paper is in showing a successful application of IOHMMs to a real-
world financial data modeling problem, over different types of returns series, revealing some
interesting properties of the underlying process by performing comparisons with alternative
but related model structures. The IOHMMs and the other models are trained to predict the
conditional density of the returns over the next one or more time steps (for daily, weekly,



and monthly data), not only their conditional mean. In this paper, we study and compare
for different models the out-of-sample performance in terms of predicting the conditional
density. Using the out-of-sample performance as a yardstick allows to compare models that
have very different numbers of degrees of freedom, and that are not necessarily special cas-
es of each other. The IOHMMs performed better in a statistically significant way in terms
of out-of-sample log-likelihood in comparison to a Gaussian model, a HMM, a conditional
linear Gaussian model, and a mixture of linear experts (mixture of conditionally linear Gaus-
sian models). However, the Gaussian model outperformed all the others for predicting the
mean, and the IOHMMSs performed better than models without a state variable, showing that
the IOHMM captured non-linear dependencies in the higher moments involving a temporal
structure, and that artificial neural networks were useful to capture these non-linearities.

2  Summary of the IOHMM Model and Learning Algo-
rithm

The model of the multivariate discrete time-series data is a mixture of several models, each
associated to a sequence of states, or regimes. In each of these regimes, the relation between
certain variables of interest may be different and is represented by a different conditional
probability model. For each of these regime-specific models, we can use a multi-layer arti-
ficial neural network or another conditional distribution model (depending on the nature of
the variables). In this paper we experimented with conditionally Gaussian models for each
regime, with the dependence being either linear or non-linear (with a neural network). The
sequence of states (or regimes) is not observed, but it is assumed to be a Markov chain,
with transition probabilities that may depend on the currently observed (or input) variables.
In this paper we have only experimented with unconditional transition probabilities. An
IOHMM is an extension of Hidden Markov Models (HMMs) to the case of modeling the
conditional distribution of an output sequence given an input sequence. Whereas HMMs rep-
resent a distribution P(yT) of sequences of (output) observed variables yI = yi,vs,. .., yr,
IOHMMs represent a conditional distribution P(y{ |zT), given an observed input sequence
2T = 21,19, ...,xp. In the asynchronous case, the lengths of the input and output sequences
may be different. See (Bengio, 1996) for a more general discussion of Markovian models which
include IOHMMs.

2.1 The Model and its Likelihood

As in HMMs, the representation of the distribution is very much simplified by introducing a
discrete state variable ¢; (and its sequence ¢f ), and a joint model P(y!, ¢f'|2T), along with
two crucial conditional independence assumptions:

P(ydar, vi s a1) = Plyilge, x) (1)

P(Qt+1‘Q§ayi>$T) = P(qt+1|qt7xt) (2)



In simple terms, the state variable ¢;, jointly with the current input x;, summarize all
the relevant past values of the observed and hidden variables when one tries to predict the
distribution of the observed variable 1, or of the next state qu;.

Because of the above independence assumptions, the joint distribution of the hidden
and observed variables can be much simplified, as follows:

T-1 T
P(yuch |$1 H Qt+1|Qt,fEt H ytht,wt (3)

The joint distribution is therefore completely specified in terms of (1) the initial state prob-
abilities P(q;), (2) the transition probabilities model P(g|q1,x:) and, (3) the emission
probabilities model P(y;|q;, x;). In our experiments we have arbitrarily chosen one of the
states (state 0) to be the “initial state”, i.e., P(¢1 = 0) =1 and P(q; > 0) = 0.

The conditional likelihood of a sequence, P(y{|xT) can be computed recursively, by
computing the intermediate quantities P(yt, ¢;|zT), for all values of ¢ and ¢, as follows:

P(yiaQtymlT) = P(?/t‘Qt,fL’t)ZP(Qt’qphmt)P(y?l,Qtflfl’lT) (4)

qt—1

The recursion is initialized with P(y1, ¢i|zT) = P(y1|q1, 71) P(q1). This recursion is similar to
the one used for HMMs, and called the forward phase, but for the fact that the probabilities
now change with time according to the input values. The computational cost of this recursion
is O(Tm) where T is the length of a sequence and m is the number of non-zero transition
probabilities at each time step.

Let us note le” (p) for the p-th sequence of a training data set, of length T,,. The above
recursion allows to compute the log-likelihood function

= >"logP(yi” (p)|x1" (p). 0) (5)

where 6 are parameters of the model which can be tuned in order to maximize the likelihood
over the training sequences {z?(p),y:”(p)}. Note that we generally drop the conditioning of
probabilities on the parameters 6 unless the context would make that notation ambiguous.

2.2 Training IOHMMs

For certain types of emission and transition distributions, it is possible to use the EM
(Expectation-Maximization) algorithm (Dempster, Laird and Rubin, 1977) to train IOHMMs
(see (Bengio and Frasconi, 1996) and (Lauzon, 1999)) to maximize [(6) (eq. 5) iteratively.
However, in the general case, one has to use a gradient-based numerical optimization algo-
rithm to maximize [(#). This is what we have done in the experiments described in this paper,
using the conjugate gradient descent algorithm to minimize —I(¢). The gradient = 01(9) can be
computed analytically by back-propagating through the forward pass computatlons (eq. 4)
and then through the neural network or linear model. The equations for the gradients can be
easily obtained, either by hand using the chain rule or using a symbolic computation program
such as Mathematica.



2.3 Using a Trained Model

Once the model is trained, it can be used in several ways. If inputs and outputs up to time ¢
(or just inputs up to time t) are given, one can compute the probability of being in each one
of the states (i.e, regimes). Using these probabilities, one can make predictions on the output
variables (e.g., decision, classification, or prediction) for the current time step, conditional on
the current inputs and past inputs/outputs. This prediction is obtained by taking a linear
combination of the predictions of the individual regime models,

P(yt\y{_h,xﬁ) = Zp(yt|Qt = z',xt)P(qt = i>y§_h|$i)

where h is called the horizon because it is the number of time steps from a prediction to
the corresponding observation, i.e., we want to predict y; given y,_j (and the inputs). The
weights of this linear combination are simply the probabilities of being in each one of the
states, given the past input/output sequence and the current input:
Plas = ile} yi7") = e = LAl
> Pl =i, yi"|2t)

We can compute recursively

Pl =i,y "at) =" Plg =i, -1 = jlw) Plg—1 = 7,y "2t )

J

starting from the P(q_j, = i,y."|21™") computed in the forward phase (equation 4).

We can also find the most likely sequence of regimes up to the current time step, using
the Viterbi algorithm (Viterbi, 1967) (see (Lauzon, 1999) in the context of IOHMMSs). The
model can also be used as an explanatory tool: given both past and future values of the
variables, we can compute the probability of being in each one of the regimes at any given
time step £. If a model of the input variables is built, then we can also use the model to
make predictions about the future expected state changes. What we will obtain is not just
a prediction for the next expected state change, but a distribution over these changes, which
also gives a measure of confidence in these predictions. Similarly for the output (prediction
or decision) variables, we can train the model to compute the expected value of this variable
(given the current state and input), but we can also train it to model the whole distribution
(which contains information about the expected error in a particular prediction).

3 Experimental Setup

In this section, we describe the setup of the experiments performed on financial data, for
modeling the future returns of Canadian stock market indices. The methodology for estimat-
ing and comparing performance is presented: it is based on the out-of-sample behavior of the
models when trained sequentially. Using the out-of-sample performance allows to compare
very different models, some of which may be much more parsimonious than others, and those



models do not need to be structurally special cases of each other. In subsection 3.1 we de-
scribe the mathematical form of each of the compared models. In subsection 3.2, we explain
how the out-of-sample measurements are analyzed in order to make a statistical comparison
between a pair of models. The central question concerns the estimation of the variance of the
difference between the average performance of two models.

Let us first introduce some notation. Let

r = valuey /value,_; — 1

be a discrete return series (the ratio of the value of an asset at time ¢ over its value at time
t — 1, which in the case of stocks includes dividends and capital gains). Let 7j,; be a moving
average of h successive values of ry:

SRS

Tht =

t
S o
t—h+1

In the experiments, we will measure performance in two ways: looking at time ¢ at how well
the conditional expectation (first moment) of

S=

Yt = Thit+h

is modeled, and looking at how well the overall conditional density of ¥, is modeled. The
distribution is conditioned on the input series x;. The prediction horizons h in the various
experiments were 1, 5, and 12.

In the experiments, all the models P are trained at each time step t to maximize the
conditional likelihood of the training data, P(yi """, 6), yielding parameters 6,. We then
use the trained model model to infer P(yt|yi_h , oy, 0;), and we measure out-of-sample

e SE, the squared error: 3(y — Elyyt™, 24, 6,])%, and

e NLL, the negative log-likelihood: —log P(y|yt™", 1, 6,),

where E[.|0] is the expectation under the model distribution P(.|§). The above logarithm
is for making an additive quantity, and the minus is for getting a quantity that should be
minimized, like the squared error.

In the experiments we have performed experiments on three types of return series:

1. Daily market index returns: we used daily returns data from the TSE300 stock
index, from January 1977 to April 1998, for a total of 4154 days. In some experiments
daily returns are predicted while in others the daily data series are used to predict
returns over 5 days (i.e. one week since there are no measurements for week-ends).

2. Monthly market index returns: we used 479 monthly returns from the TSE300 stock
index, from February 1956 to January 1996. We also used 24 economic and financial
time-series as input variables in some of the models.

3. Sector returns: we used monthly returns data for the main 14 sectors of the TSE,
from January 1956 to June 1997 inclusively, for a total of at most 497 months (some
sectors started later).



3.1 Models Compared

In the experiments, we have compared the following models. All can be considered special
cases of IOHMMs, although in some cases an analytic solution to the estimation exists, in
other cases the EM algorithm can be applied, while in others only GEM or gradient-based
optimization can be performed.

e Gaussian model: we have used a diagonal Gaussian model (i.e., not modeling the
covariances among the assets). The number of free parameters is 2n for n assets. In
the experiments n = 1 (TSE300) or n = 14 (sector indices). There is an analytical
solution to the estimation problem. This model is the basic “reference” model to which
the other models will be compared.

n

Py(Y =ylz,0) = [ N(ws; i, 07)

i=1

where N(z;e,v) is the Normal probability of observation z with expectation e and
variance v, 0 = (u,0), and g = (g1, ..., pn), 0 = (01,...,0,). This is like an “uncondi-
tional” IOHMM with a single state.

e Mixture of Gaussians model: we have used a 2-component mixture in the experi-
ments, whose emissions are diagonal Gaussians:

Po(Y =ylz) = ij Y = ylz, p))

where 6 = (w, p1, pa, ..., ps), pj is the vector with the means and deviations for the j-th
component, and >, w; = 1, w; > 0. J = 2 in the experiments, to avoid overfitting.
The number of free parameters is J — 14 2n.J. This is like an “unconditional” IOHMM
with J states and shared transition probabilities (all the states share the same tran-
sition probability distribution to the next states). This means that the model has no
“dynamics”: the probability of being in a particular “state” does not depend on what
the previous state was.

e Conditional Linear Gaussian model: this is basically an ordinary regression, i.e., a
Gaussian whose variance is unconditional while its expectation is conditional:

n K
P(Y =ylz,0) = [[ Nyis bi + >_ A pan, 07)
i=1

k=1

where 0 = (A,b,0), xy denotes the k-th element of the input vector. The number of
free parameters is n(2 + K). In the experiments, K = 1,2,4,6, 14, or 24 inputs have
been tried for various input features. See more details below in section 4.

e Mixture of Conditional Linear Gaussians: this combines the ideas from the pre-
vious two models, i.e., we have a mixture, but the expectations are linearly conditional



on the inputs. We have used separate inputs for each sector prediction:
J
Pin(Y =yl 0) = >_w;Pi(Y = ylz, p;)
j=1

where 0 = (w,p1, D2, ..., ps), p; is the parameter vector for a conditional linear Gaussian
model, and as usual w; > 0, >°;w; = 1. The number of free parameters is J times the
number of free parameters of the conditional linear Gaussian model, i.e., nJ(2 + K)
in the experiments. J = 2 in the experiments, and K = 1,2,4,6, 14,24 have been
tried. This is like an IOHMM whose transition probabilities are shared across all states.
Like for the mixture of Gaussians, this means that the model has no “dynamics”: the
probability of being in a particular “state” does not depend on what the previous state
was. Note that this model is also called a mizture of experts (Jacobs et al., 1991).

e HMM: this is like the Gaussian mixture except that the model has dynamics, modeled
by the transition probabilities. In the experiments, there are J = 2 states. The number
of free parameters is 2n.J+.J(J—1). This is like an “unconditional” IOHMM. Each emis-
sion distribution is an unconditional multinomial: P(¢q; = i|¢—1 = j,2¢) = A, ;. Each
emission distribution is a diagonal Gaussian: P(y:|q: = i, z¢) = [1j=; N (Yei; 14, crjzﬁ).

e Linear IOHMM: this is like the mixture of experts, but with dynamics (modeled by the
transition probabilities), or this is like an HMM in which the Gaussian expectations are
affine functions of the input vector. We have not used conditional transition probabilities
in the experiments. Again we have used J = 2 states, and the number of inputs K varies.
The number of free parameters is nJ(2 + K) + J(J — 1).

e MLP IOHMM: this is like the linear IOHMM except that the expectations are non-
linear functions of the inputs, using a Multi-Layer Perceptron with K inputs and a single
hidden layer with H hidden units (H = 2,3, ... depending on the experiment). In one
set of experiments we have used the same MLP for all the n assets (i.e., a single network
per state is used, with n outputs associated to the n assets). In the other experiments,
a separate network (with 1 output and K inputs) is used for each asset, so there are n
MLPs per state. In the first case the number of free parameters is J(J — 1) + J(2n +
(1+ H)n+ H(n+ 1)), and in the second case it is J(J — 1) + Jn(2+ H + H(K + 1)).

3.2 Performance Measurements

When comparing the out-of-sample performance of two predictive models on the same data, it
is not enough to measure their average performance: we also need to know if the performance
difference is significant. In this section we explain how we have answered this question, using
an estimator of the variance of the difference in average out-of-sample performance of time-
series models.

In the experiments on sectors, there are several assets, with corresponding return series.
Different models are trained separately on each of the assets, and the results reported below
concern the average performance over all the assets. We have measured the average squared

7



error (MSE) and the average negative log-likelihood (NLL). We have also estimated the vari-
ance of these averages, and the variance of the difference between the performance for one
model and the performance for another model, as described below. Using the latter, we have
tested the null hypothesis that two compared models have identical true generalization. For
this purpose, we have used an estimate of variance that takes into account the dependencies
among the errors at successive time steps. Let e; be a series of errors (or error differences),
which are maybe not i.i.d. Their average is

assumed approximately Normal. We are interested in estimating the variance

Varle e Z Z Cov(ey, ep).

t=1t'=1

Note that e;’s form a series of out-of-sample performances, and unlike a series of in-sample
residues it may have autocorrelations, even if the model has been properly trained. A plot
of the auto-correlation function of e, (both for the NLL sequence and the difference in NLL
for two models) show the presence of significant auto-correlations. Since we are dealing with
a time-series, and because we do not know how to estimate independently and reliably all
the above covariances, we assumed that the error series is covariance-stationary and that the
covariance dies out as |t — t'| increases.

Because there are generally strong dependencies between the errors of different mod-
els, we have found that much better estimates of variance were obtained by analyzing the
differences of squared errors, rather than computing a variance separately for each average:

Var[ed —eP] = Varle] + Var[eP] — 2Cov[e, e?]

where 2!

is the average error of model A on asset i, and similarly for B. Note that to take the
covariance into account, it is not sufficient to look at the average out-of-sample performance
for each model.

The average over assets of the performance measure is simply the average of the average

errors for each asset:

To combine the variances obtained as above for each of the assets, we decompose the variance
of the average over assets as follows:

Z B ZZCO’U ZB,ef—éf]
i1 i=1 j<i

where the covariances are estimated by the sample covariances of the averages of the error
differences:

]. n _A ].
V@T[ﬁZ(ei — 6 :—2

i=1

Covle) — ¢ &) —el] ~

_1 Z _etz+€)(€fj_é§l_65j+é§3)
) =



In the tables below, we give the p-value of the null hypothesis that model A is not better
than model B (where model A is a reference model, such as the best-performing model). In
the case that e? < &7, the alternative hypothesis is that A is better than B (so we use a
single-sided test, with p-value = P(E[e®] — Ele?] > &P — é4)). In the opposite case, we
consider the converse test (with the alternative hypothesis being that B is better than A).

4 Experimental Results

Each of the tables in this section gives the result of a series of experiments in which the output
variable is the same, and we vary the choice of model and input variables (when the model is
conditional).

To explain some of the details of the input variables used in the experiments, let us
define the following measure of return variation:

vy = |1y — Tegl

where 7, is the historical average of the returns up to time ¢, and 74, is a d-time steps moving
average of v, available at time t.
The following target output variables have been considered:

e TSE300 5-day return: we want to predict the conditional density of the 5-day average
future market index return y; = 75445 at time ¢ (¢ on a daily scale); horizon h = 5.

e TSE300 12-month return: we want to predict the conditional density of the 1-year
average future market index return y; = 7124412 at time ¢ (£ on a monthly scale); horizon
h =12.

e TSE300 1-month return: we want to predict the conditional density of next month’s
market index return y; = 41 at time ¢ (¢ on a monthly scale); horizon h = 1.

e 14 sectors 1-month return: we want to predict the individual conditional density of
next month’s return for each of the 14 sector indices of the Toronto Stock Exchange,
Y = I'yy1, at time ¢ (¢ on a monthly scale); horizon h = 1.

The following input variables have been considered in the experiments (when the number
of inputs used is n, it is shown in the tables with K = n besides the model structure):

e 1 input: the current return r; associated to the output series.
e 2 inputs: the current return r; and current variation v;.

e 4 inputs: the current return r;, current variation v;, and the average past 4 returns
and variations 74, and v,,.

e 12 inputs: the current return r;, current variation v, the average past 4 returns and
variations 74, and 7,,, and the average past 12 returns and variations 715, and vy94.



e 14 inputs: the 14 current sector returns.

e 24 inputs: 24 economic and financial indicators of the Canadian financial markets:
the first input is the historical average of the TSE300 market index, the next two
variables are two Canadian interest rates, the next 6 variables are estimated risk premia
for various assets, the next 2 variables are two measures of return-on-equity for the
Canadian market, and the last 13 provide the shape of the interest rate curve.

In the tables, the column entitled “MSE (sdev)” gives the average squared error and the
estimated standard deviation of that average (in parenthesis). A similar column is provided
for the negative log-likelihood (NLL). The performance figure in bold is the lowest (i.e. the
best) in the column. The column entitled “p-value (%) vs Gaussian” gives the p-value (in
percent) of a single-sided test for the null hypothesis that the model is not better in NLL than
the Gaussian reference. If there is no “W” before the percentage, the alternative hypothesis
is that the model is better than the reference; if there is a “W” then the test is with respect to
the alternative hypothesis that the reference is better than the model. Similarly, the column
entitled “p-value (%) vs M” compares each of the model with model M (which is the one
with the lowest NLL). For this column there never is a “W” since the comparison is always
against the “best” model, so we are testing with respect to the alternative hypothesis that the
given model is worse than the “best” model. For both p-value columns, bold figures underline
the fact that the p-value is less than 5%, i.e., that we consider that the null hypothesis of
no difference should be rejected. Since in all comparisons no model significantly improved
on the Gaussian for predicting the first moment (i.e., with respect to mean squared error),
we have only given the p-values for comparing the negative log-likelihoods. Note that the
p-values take into account not only the variances of each model’s performance but also their
covariance, which is generally positive (hence the variance of their difference is much smaller
than the sum of their variance).

MSE(sdev) | NLL(sdev) p-value (%) | p-value(%) vs
x107° vs Gaussian | IOHMM (MLP)
Gaussian 6.73 (1.29) | -4.171 (0.064) < le-7
Gaussian Mixture 6.73 (1.29) | -4.241 (0.044) 0.41 < le-7
HMM 6.74 (1.30) | -4.257 (0.046) 0.02 < le7
Lincar (K—1) 6.87 (1.41) | -4.130 (0.062) 1.47 < le7
Mixture of Linear (k—1) || 6.79 (1.34) | -4.261 (0.041) 0.25 1.31e-3
IOHMM (Linear K=4) 6.94 (1.39) | -4.277 (0.059) < le-7 5.80e-3
IOHMM (MLP H=2,k=4) | 6.96 (1.35) |-4.332 (0.052) < le-7

Table 1: Results on modeling the next TSE300 5-day returns every day. Bold MSE or NLL
shows the best value obtained. Bold p-values are < 5%, suggesting that the difference with
the reference is significant.

In table 1 and figure 1 the results on predicting the 5-day return of the TSE300 are
presented. All the conditional models use the 4 inputs variables. No model outperforms
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Figure 1: Comparative results on modeling the conditional density of the next TSE300 5-day
returns every day. Top: out-of-sample log-likelihood. Bottom: p-value vs MLP IOHMM.
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the Gaussian for predicting the first moment, but all of them outperform the Gaussian for
predicting the conditional density. As in all of the other experiments, the Gaussian model
gives the lowest MSE (error in prediction of the first moment), but the difference with the
other models is not significant. For predicting the conditional density, the best model is
the non-lincar IOHMM (with a MLP), and the difference with each of the other models
is significant. The following differences are also significant: the HMM is significantly better
than the Gaussian mixture (p-value = 1.1%, showing that state information is important), the
conditionally linear mixture is significantly better than the unconditional mixture (p-value =
0.16%, showing that the inputs are useful to predict the distribution of the future returns) and
the linear IOHMM is significantly better than the mixture of conditionally linear mixture (p-
value = 2.54%, showing that even with conditioning inputs, the hidden state variable remains
useful). In addition, the table shows that the non-linearity in the IOHMM is important to
get further improvement (it is not always the case with the other data sets). In figure 2 are
shown examples of the shape of the predicted conditional densities for three of the models,
out-of-sample, on this data series. Note the flatter shape of the density for the two IOHMMs
(around 1 to 2% change in price).

MSE(sdev) | NLL(sdev) | p-value (%) | p-value(%) vs
x107° Gaussian | IOHMM (MLP)
Gaussian 9.69 (2.13) | -2.89 (0.12) < le-7
Mixture Gaussian 9.69 (2.13) | -2.89 (0.12) 28.14 < le-7
HMM 10.00 (2.17) | -2.97 (0.12) 0.0043 5.40e-3
Cond. Linear (K=1) 10.13 (2.54) | -2.90 (0.14) 38.71 2.51e-3
Mixture of Linear (k=1) || 10.04 (2.49) | -2.91 (0.13) 27.93 4.17e-4
IOHMM (Linear K=1) 10.15 (2.54) | -2.94 (0.14) 10.53 2.95e-4
IOHMM (MLP H=2, K=1) || 10.42 (2.35) | -3.17 (0.12) < le-7

Table 2: Results on modeling the next TSE300 12-month returns every month. Bold MSE
or NLL shows the best value obtained. Bold p-values are < 5%, suggesting that the difference
with the reference is significant.

In table 2 and figure 3, the results of experiments on the monthly TSE300 data are pre-
sented, with a horizon of h = 12 months, i.e., the models predict every month the conditional
density of the next 12-month TSE300 market index return. Note that only the non-linear
IOHMM and the HMM give a significantly better model than the Gaussian, and note that
the non-linear IOHMM is significantly better than all the others.

In table 3 and figure 4, the results of experiments on the monthly TSE300 data are
presented. Almost all the models (except two of the linear models) are significantly better
than the Gaussian for modeling the density of the next month return. The best model is the
linear IOHMM, and its performance is significantly better than the performance of the other
models. Note also that the models with the 24 inputs (which include not only technical but
also economic variables) outperform the models with only technical variables in input.

Table 4 and figure 5 shows the results of experiments on jointly modeling the conditional
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Figure 2: Comparison of the shape of the conditional densities predicted for the same time
step (out-of-sample) for three models of the 5-day TSE300 log-returns: Gaussian (left), linear

IOHMM (middle), non-linear IOHMM (right). The vertical bars show a 90% confidence
interval around the expected return.
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Figure 3: Comparative results on modeling the conditional density of the next TSE300 12-
month returns every month. Top: out-of-sample log-likelihood. Bottom: p-value vs MLP
IOHMM.
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Figure 4: Comparative results on modeling the conditional density of the next TSE300 1-
month returns every month. Top: out-of-sample log-likelihood. Bottom: p-value vs Linear
IOHMM (K = 24).
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Figure 5: Comparative results on jointly modeling the conditional density of the next TSE 14
sectors 1-month returns every month. Top: out-of-sample log-likelihood. Bottom: p-value
vs MLP IOHMM (K = 24).
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p-value vs Linear IOHMM (K = 6).
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MSE(sdev) | NLL(sdev) | p-value (%) | p-value(%)

x1073 vs Gaussian | vs IOHMM
(K=24)

Gaussian 1.22 (0.20) | -1.60 (0.08) 3.49e-3
Mixture Gaussian 1.22 (0.20) | -1.68 (0.07) 0.28 0.046
HMM 1.23 (0.21) | -1.69 (0.07) 0.059 0.52
Cond. Linear (K=4) 1.25 (0.20) | -1.63 (0.07) 6.51 0.086
Cond. Linear (k=6) 1.28 (0.21) | -1.63 (0.07) 7.62 0.084

Cond. Linear (kK=24) 2.12 (0.45) | -1.73 (0.07) 0.18 7.69e-3
Mixture of Linear (K=4) 1.25 (0.20) | -1.74 (0.06) 0.025 0.72
Mixture of Linear (K=6) 1.32 (0.22) | -1.74 (0.06) 0.096 0.45
Mixture of Linear (k=24) | 2.97 (0.70) | -1.81 (0.09) 0.57 0.17
IOHMM (Linear K=4) 1.31 (0.22) | -1.73 (0.06) 0.013 0.74
IOHMM (Linear K=6) 1.39 (024) -1.74 (005) 0.13 0.32

IOHMM (Linear K=24) 2.27 (048) -2.08 (009) 3.49e-3

IOHMM (MLP H=3, K=4) 1.25 (0.20) | -1.75 (0.06) 4.86e-3 0.090
IOHMM (MLp H=3,K=6) || 1.36 (0.22) | -1.76 (0.06) 2.56e-3 0.25
IOHMM (MLP H=2, K=24) || 1.42 (0.21) | -1.87 (0.06) < le-7 0.84

Table 3: Results on modeling the next TSE300 1-month returns. Bold MSE or NLL shows
the best value obtained. Bold p-values are < 5%, suggesting that the difference with the
reference is significant.

density of the next month’s return for the 14 sector indices. All the conditional models have
14 inputs, for the current return of each of the 14 sectors. The non-linear IOHMM yields
the best results, significantly above all the other models except the mixture of linear experts
(but the p-value is close to our threshold, at 6.3%). We have also tried to model the relative
returns of the sectors with respect to the market index, and the results are shown in table 5.
Again, the non-linear IOHMM performed best in NLL, but here the difference with the linear
IOHMM is not statistically significant.

In table 6 and figure 6, the results of the other experiments on the monthly 14 sectors
of the TSE300 data are presented, where each sector has been trained individually. For
predicting the conditional density, the Gaussian is beaten significantly by all the other models.
The best-performing model is one of the linear IOHMMs. It outperforms significantly all the
models except an IOHMM with MLP (5 hidden units, 1 input) and the mixture of linear
experts (with 6 inputs).

5 Conclusions

In this paper we have applied Input/Output Hidden Markov Models to financial time-series
data in a number of comparative experiments aimed at measuring the expected generalization
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MSE(sdev) | NLL(sdev) | p-value (%) | p-value(%)
x1073 vs Gaussian | vs IOHMM
(MLP)
Gaussian 2.02 (0.19) | -1.41 (0.05) < le-7
Mixture Gaussian 2.02 (0.19) | -1.46 (0.05) < le-7 < le-7
HMM 2.02 (0.19) | -1.47 (0.04) 9.53e-5 < le-7
Cond. Linear (K=14) 2.49 (0.20) | -1.13 (0.14) || W4.32e-4 < le-7
Mixture of Linear (k=14) | 2.18 (0.19) | -1.59 (0.04) 2.98e-6 6.29
IOHMM (Linear K=14) 2.29 (0.22) | -1.40 (0.10) W47.56 < le-7
IOHMM (MLP H=2, K=14) || 2.09 (0.18) | -1.62 (0.04) < le-7

Table 4: Results on jointly modeling the next 14 sectors 1-month returns (one model used
for all the sectors). Bold MSE or NLL shows the best value obtained. Bold p-values are

< 5%, suggesting that the difference with the reference is significant.

error of different types of model structures. The main conclusions from the experiments are

the following:

e For predicting the expected future returns, none of the models we have tried performs
better than the simple-minded historical average, i.e., we get better predictions of the

mean using an unconditional model.

e For predicting the future distribution of the returns at a fixed horizon, we have found

IOHMMs to perform significantly better than other models, more specifically:

— For predicting the next 5-day return of the TSE300, the non-linear IOHMM (with

MLPs) is significantly better than all the other models.

— For predicting the next 12-month return of the TSE300, the non-linear IOHMM

(with MLPs) is significantly better than all the other tested models.

— For predicting the next 1-month return of the TSE300, the linear IOHMM with
fundamental economic input variables is significantly better than all the other

models.

— For predicting the next 1-month return of the 14 sector indices,

* when predicting all 14 sectors simultaneously, the non-linear IOHMM (with
MLPs) is significantly better than all the other tested models (except the

mixture of linear experts, against which the p-value is 6.3%).

x when predicting all 14 sectors simultaneously, one of the linear IOHMMs is
significantly better than most other models except a non-linear IOHMM and

a mixture of linear experts.

By looking over these results and trying to answer qualitative questions about which type of
models make better predictions, we find that the results broadly suggest that for predicting
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MSE(sdev) | NLL(sdev) | p-value (%) | p-value(%)
x1073 vs Gaussian | vs [OHMM
(MLP)
Gaussian 0.994 (0.071) | -1.81 (0.036) 3.0e-6
Mixture Gaussian 0.994 (0.071) | -1.81 (0.036) 1.46e-4 3.0e-6
HMM 0.994 (0.071) | -1.81 (0.036) 9,96e-1 3.0e-6
Cond. Linear (K=14) 1.14 (0.083) | -1.82 (0.035) 41.13 < le-7
Mixture of Linear (k=14) | 1.14 (0.083) | -1.87 (0.025) 9.73e-3 1.32
IOHMM (Linear K=14) 1.23 (0.088) | -1.89 (0.026) 7.44e-1 47.29
IOHMM (MLP H=2, K=14) || 1.05 (0.077) | -1.89 (0.029) | 2.98e-6

Table 5: Results on jointly modeling the next 14 sectors 1-month relative returns (with
respect to the TSE300 index). Bold MSE or NLL shows the best value obtained. Bold
p-values are < 5%, suggesting that the difference with the reference is significant.

the density of the next returns or relative returns, (1) conditional models perform better,
(2) using a state variable that can deal with regime changes yields better performance, (3)
combining both conditional predictions and a state variable yields even better results, and in
most cases (4) non-linear predictions associated to each state yield even better results than
linear predictions.

There are many more experiments and analyses that should be done in order to pur-
sue in the direction explored here. Most interestingly, we would like to ascertain whether
the improvements in likelihood brought by the various mixture models, and in particular the
IOHMMs, can be used in order to improve financial decision-taking, e.g., for assessing risk in
portfolio management or for trading options. Also, in view of the fact that the model is good
at predicting higher moments, it would be interesting to apply it as a risk-assessing tool (for
example to evaluate value-at-risk) rather than as a tool to predict expected returns. It might
be used as such (for controlling risk), or incorporated in a system that trades on predictions
of volatility. Another type of application of the IOHMM is as a generative model for para-
metric bootstrap. The IOHMM could thus be used to generate many alternative plausible
histories, over which the variability of any learning algorithm (for example the variability of
its out-of-sample performance) could be assessed.
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