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Forecasting Non-Stationary Volatility
with Hyper-Parameters*

Yoshua Bengio† and Charles Dugas‡

Résumé /Abstract

Nous considérons des données séquentielles échantillonnées à partir d'un
processus inconnu, donc les données ne sont pas nécessairement iid.  Nous
développons une mesure de généralisation pour de telles données et nous considérons
une approche récemment proposée pour optimiser les hyper-paramètres qui est basée
sur le calcul du gradient d'un critère de sélection de modèle par rapport à ces hyper-
paramètres. Les hyper-paramètres sont utilisés pour donner différents poids dans la
séquence de données historiques. Notre approche est appliquée avec succès à la
modélisation de la volatilité des rendements d'actions canadiennes sur un horizon de
un mois.

We consider sequential data that is sampled from an unknown process, so that
the data are not necessarily iid. We develop a measure of generalization for such data
and we consider a recently proposed approach to optimizing hyper-parameters, based
on the computation of the gradient of a model selection criterion with respect to
hyper-parameters. Hyper-parameters are used to give varying weights in the
historical data sequence. The approach is successfully applied to modeling the
volatility of Canadian stock returns one month ahead.

Keywords: Sequential data, hyper-parameters, generalization, stock returns, volatility.

Mots-clés : Données séquentielles, hyper-paramètres, généralisation, rendement
d'actions, volatilité.
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1 Introduction

Many learning algorithms can be formulated as the minimization of a train-
ing criterion which involves both training errors on each training example and
some hyper-parameters, which are kept fixed during this minimization. For
example, in the regularization framework (Tikhonov & Arsenin, 1977), one
hyper-parameter controls the strength of the penalty term and thus the capac-
ity (Vapnik, 1998) of the system. Many criteria for choosing the value of the
hyper-parameter have been proposed in the model selection literature, in gen-
eral based on an estimate or a bound on generalization error (Vapnik, 1998;
Akaike, 1974; Craven & Wahba, 1979). In (Bengio, 1999) we have introduced
a new approach to simultaneously optimize many hyper-parameters, based on
the computation of the gradient of a model selection criterion with respect to
the hyper-parameters. In this paper, we apply this approach to the modeling of
non-stationary time-series data, and present comparative experiments on finan-
cial returns data for Canadian stocks.

Most approaches to machine learning and statistical inference from data
assume that data points are i.i.d. (see e.g. (Vapnik, 1998), but an exception
is (Littlestone & Warmuth, 1994)). We will not consider bounds on general-
ization error, but simply estimates of generalization error and ways to optimize
them explicitly. In particular, we use an extension of the cross-validation cri-
terion that can be applied to sequential non-i.i.d. data. However, the general
approach could be applied (and maybe better results obtained) with other mod-
el selection criteria, since we suspect that cross-validation estimates are very
noisy. In Section 2, we formalize a notion of generalization error for data that
are not i.i.d., similar to the notion proposed in (Evans, Rajagopalan, & Vazirani,
1993), and describe an analogue to cross-validation to estimate this generaliza-
tion error, that we call sequential validation. In Section 3, we summarize
the theoretical results obtained in (Bengio, 1999) for computing the gradient of
a model selection criterion with respect to hyper-parameters. In particular, we
consider hyper-parameters that smoothly control what weight to give to past
historical data. In Section 4, we describe experiments performed on artificial
data that are generated by a non-stationary process with an abrupt change in
distribution. In Section 5, we describe experiments performed on financial data:
predicting next month’s return first and second moment, for Canadian stocks.
The results show that statistically significant improvements can be obtained
with the proposed approach.

2 Generalization Error for Non-IID Data

Let us consider a sequence of data points Z1, Z2, . . . , with Zt ∈ O (e.g., O =
the reals Rn) generated by an unknown non-stationary process: Zt ∼ Pt(Z).
At each discrete time step t, in order to take a decision or make a prediction,
we are allowed to choose a function f from a set of functions F , and to do
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this we are allowed to use past observations Dt = (z1, z2, . . . zt). Let us call
this choice f∗Dt . At the next time step (or more generally at some time step in
the future), we will be able to evaluate the quality of our choice f∗Dt , with a
known cost function Q(f∗Dt , Zt+1). For example, we will describe experiments
for the case of affine functions, i.e., F = {f : Rn → Rm|f(x) = θx̃,x ∈ Rn, θ ∈
Rm×(n+1), x̃ = (x, 1) = (x1, . . . , xn, 1)}, and these functions will be selected to
minimize the squared loss:

Q(f, (x, y)) =
1
2

(f(x)− y)2. (1)

In this context, we can define the expected generalization error Ct+1 at the
next time step as the expectation over the unknown process Pt+1 of the squared
loss function Q:

Ct+1(f) =
∫
zt+1

Q(f, zt+1) dPt+1(zt+1). (2)

We would like to select f∗ which has the lowest expected generalization error,
but only an approximation of it can be reached. At time t, we are only given
partial information on the process density Pt. We thus revert to the empirical
error of the choice f , when data Dt have been observed which is

Ĉt+1(f,Dt) =
1
t

t∑
s=1

Q(f, zs). (3)

The minimization of this empirical error would lead us to choose some “good”
f ∈ F . However, if F has too much capacity (Vapnik, 1998), it might be better
to choose an f that minimizes an alternative functional, e.g., a training criterion
that penalizes the complexity of f in order to avoid over-fitting the data and
thus, avoid poor generalization:

Ĉt+1(f,Dt, λ) = R(f, λ) +
1
t

t∑
s=1

Q(f, zs) (4)

where λ ∈ Rl is a vector of so-called hyper-parameters and R(f, λ) is a
penalty term that defines a preference over functions f within F . A common
heuristic used by practitioners of financial prediction is to train a model based
only on recent historical data, because of the believed non-stationarity of this
data. This heuristic corresponds to the assumption that there may be drastic
changes in the distribution of financial and economic variables. More generally,
the cost function can weight differently past observations, giving more weight
to observations that occurred after the most recent change in the underlying
process.

Ĉt+1(f,Dt, λ) = R(f, λ) +
1
t

t∑
s=1

ws(t, λ)Q(f, zs) (5)
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where ws(t, λ) is a scalar function of λ that weights data observed at time s,
using information up to time t. In this paper, we will concentrate on different
weighting of past observations and drop the penalty term. Our functional is
then:

Ĉt+1(f,Dt, λ) =
1
t

t∑
s=1

ws(t, λ)Q(f, zs) (6)

Let us suppose that one chooses f∗Dt,λ which minimizes the above Ĉt+1, given
a fixed choice of λ and a set of data Dt. We obtain

f∗Dt,λ = arg min
f∈F

Ĉt+1(f,Dt, λ) (7)

One way to select the hyper-parameters λ in equations (6) and (7) is to
consider what would have been the generalization error in the past if we had used
the hyper-parameters λ. We will use a sequential cross-validation criterion:

Êt+1(λ,Dt) =
1

t−M ′
t−1∑
s=M ′

Q(f∗Ds,λ, zs+1) (8)

where f∗Ds,λ minimizes the training criterion (equation (6)), and M ′ is the
minimum number of training points to “reasonably” select a value of f within F .
Our objective is to select the combination of parameters and hyper-parameters
that minimizes the sequential cross-validation criterion. At each time t, we
will select the hyper-parameters that minimize Êt+1:

λ∗Dt = arg min
λ
Êt+1(λ,Dt) (9)

This is similar to the principle of minimization of the empirical error, but
applied to the selection of hyper-parameters, in the context of sequential data.
Once λ∗Dt has been selected, the corresponding f∗Dt is therefore obtained:

f∗Dt = f∗Dt,λ∗Dt
= arg min

f∈F
Ĉt+1(f,Dt, λ

∗
Dt). (10)

Let M be the “minimum” number of training points for learning both pa-
rameters and hyper-parameters. Let T be the total number of data points. We
estimate the generalization error of the system that chooses the set {f∗Ds}, s ∈
{M ′,M ′ + 1, . . . T} as follows:

Ĝt+1(DT ) =
1

T −M

T−1∑
s=M

Q(f∗Ds , zs+1) (11)

One might wonder why the generalization error estimate is computed using
the set of functions {f∗Ds} instead of the very last estimated function f∗DT : the
choice of hyper-parameters at t should only depend on data available up to time
t. The generalization error must therefore be seen as a generalization error for a
“strategy”, rather than the generalization error of a single, particular function.
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3 Optimizing Hyper-Parameters for Non-IID Da-
ta

In this section we summarize the theoretical results already presented in (Ben-
gio, 1999) and extend them for the application of interest here, i.e., using hyper-
parameters for modeling possibly non-stationary time-series.

If the functions of F are smooth in their parameters, the optimized θ depends
on the choice of hyper-parameters in a continuous way:

θ∗(Dt, λ) = arg min
θ
Ĉt+1(θ,Dt, λ). (12)
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Figure 1: Values of the sequential selection criterion for various values of the
hyper-parameters. As in this particular case, the function is generally smooth.
Here, the global minimum is obtained with λ1 = −0.0085 and λ2 = 60.

Note that there is a bijection between a parameterized function f and its
set of parameters θ. Therefore, the above equation (12) is the same as the
previous equation (7). For the application considered in this paper, the hyper-
parameters λ are used for controlling training weights on past data points, i.e.,
giving a weight ws(t, λ) to the past observation at time s when minimizing the
training error up to time t, in equation (6). To weight the past data points,
we have considered as an example a sigmoidal decay, with hyper-parameters λ1

and λ2, (see the smooth curve of weights in Figure 2):
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ws(t, λ) =
1

1 + exp(−λ1(s− λ2)))
(13)

This is a smooth version of the “abrupt transition” heuristic used in practice.
To apply gradient-based optimization to the selection of the hyper-parameters

(equation (9)), we will compute the gradient of the sequential cross-validation
criterion Êt+1 (equation (8)) with respect to the hyper-parameters:

∂Êt+1

∂λ

∣∣∣∣∣
λ=λ0

=
1

t−M ′
·

t−1∑
s=M ′

∂Q(θ, zs+1)
∂θ

∣∣∣∣
θ=θ∗(Ds,λ0)

· ∂θ
∗(Ds, λ)
∂λ

∣∣∣∣
λ=λ0

.(14)

Basically, this involves looking at the minimum of Ĉt+1 with respect to the
parameter vector θ, for a given hyper-parameter vector λ (equation (12)), and
then seeing how a change in λ influences the solution θ. The latter is rather
unusual as we need to compute the derivative of the parameters θ with respect
to the hyper-parameters λ.

Let us first differentiate the value of the derivative of the quadratic cost
function with respect to the parameters. If f ∈ F is affine, then Q is simply a
quadratic function of the parameters and can thus be rewritten as

Q = a(λ) + b(λ)θ +
1
2
θ′H(λ)θ (15)

where λ is considered fixed and H(λ) is the symmetric positive-definite Hes-
sian matrix of second derivatives of the training criterion with respect to the
parameters. The computation of gradients with respect to hyper-parameters
can also be performed for non-quadratic cost functions (Bengio, 1999) but in
this paper, we only need to consider the simpler quadratic case. Differentiating
Q with respect to θ, we obtain:

∂Q

∂θ
= b(λ) +H(λ)θ (16)

We now need to obtain the values of b(λ) and H(λ). Since,

b(λ) =
∂Q

∂θ

∣∣∣∣
θ=0

, (17)

we estimate b(λ) and H(λ) as:

bs(λ0) = −1
s

s∑
u=1

wu(s, λ0) · x̃u · y′u (18)

Hs(λ0) =
1
s

s∑
u=1

wu(s, λ0) · x̃u · x̃′u (19)

Setting equation (16) to zero, we obtain
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θ∗(Ds, λ0) = −H−1
s (λ0) · bs(λ0) (20)

And so, we are now able to compute the first term in equation (14):

∂Q(θ, zs+1)
∂θ

∣∣∣∣
θ=θ∗(Ds,λ0)

= (θ∗(Ds, λ0) · x̃s+1 − ys+1) · x̃s+1 (21)

Let us now derive the value of the derivative of the optimal parameters with
respect to the hyper-parameters. Equation (20) provides us with an expression
of the optimal parameters as a function of the hyper-parameters which we only
need to differentiate to obtain the solution for the second term in the summation
in equation (14):

∂θ∗(Ds, λ)
∂λ

∣∣∣∣
λ=λ0

= − ∂H−1(λ)
∂λ

∣∣∣∣
λ=λ0

· bs(λ0)− ∂b(λ)
∂λ

∣∣∣∣
λ=λ0

·H−1
s (λ0) (22)

The values ofH−1
s (λ0) and bs(λ0) are given by equations (18) and (19). Com-

puting the derivative of these functions with respect to the hyper-parameters
gives us the value of the two remaining terms.

∂b(λ)
∂λ

∣∣∣∣
λ=λ0

= −1
s

s∑
u=1

∂wu(s, λ)
∂λ

∣∣∣∣
λ0

· x̃u · y′u (23)

∂H(λ)
∂λ

∣∣∣∣
λ=λ0

=
1
s

s∑
u=1

∂wu(s, λ)
∂λ

∣∣∣∣
λ0

· x̃u · x̃′u (24)

Noting that

∂H−1

∂λ
H +

∂H

∂λ
H−1 =

∂H−1H

∂λ
=
∂I

∂λ
= 0 (25)

We can isolate ∂H−1

∂λ as a function of known values:

∂H−1

∂λ
= −H−1 ∂H

∂λ
H−1 (26)

An even more efficient method using the Cholesky decomposition of the
Hessian matrix can be found in (Bengio, 1999).

All four terms of equation (22) are known. We can then use the results
of equations (22) and (21) to compute the derivative of the sequential cross-
validation criterion with respect to the hyper-parameters (equation (14)). Then,
using gradient descent will allow us to search the space of hyper-parameters in a
continuous fashion towards a minimum (possibly local) of the sequential cross-
validation criterion. Then, equation (11) provides us with an estimate of the
generalization error of the whole process.
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Figure 2: Ratio yt
xt

vs t from the generated data (noisy curve), and training
weights ws(200, λ) (smooth curve) found at the end of the sequence by optimiz-
ing the hyper-parameters λ1 and λ2.

4 Experiments on Artificial Data

We have tested the algorithm on artificially generated non-i.i.d. data with
a single abrupt change in the input/output dependency at some point in the
sequence. The single input/single output data sequence is generated by a Gaus-
sian mixture for the inputs, and for the output given the input a left-to-right
Input/Output Hidden Markov Model (Bengio & Frasconi, 1996). A sequence of
T = 200 input/output pairs was generated. We set M ′ = 25 and M = 50 (see
equations (8) and (11)).

At time t = 80, when the model randomly switches to a state with a different
distribution, the relation between the input and the output changes drastically,
as seen in Figure 2 (with the ratio of output to input noisy curve).

The smooth curve in Figure 2 illustrates the values of the pattern weights
after the 200 observations have been taken account of. Clearly, the algorithm has
succeeded in identifying the input/output dependency change at time t = 80.
Accordingly, those observations after time t = 80 are given weights close to 1
and observations before the transition point are given close to null weighting.
Whereas research often concentrates on selecting, among a group of candidates,
an optimal period of time which is to be used for all time-series of a given type
and for the purpose of prediction, our algorithm selects this period automatically
and independently for each time-series, thus recognizing that non-stationarities
are unlikely to occur strictly simultaneously for all processes.

We compare a regular linear regression with a linear regression with three
hyper-parameters: one hyper-parameter for the weight decay and two hyper-
parameters (λ1 and λ2) to yield training weights on past data points with a
sigmoidal decay (equation (13)). The out-of-sample MSE for the regular linear
regression is 3.97 whereas it is only 0.62 when the hyper-parameters are opti-
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Figure 3: Out-of-sample squared loss for each time step t, for the ordinary re-
gression (dashed) and regression with optimized hyper-parameters (continuous).

mized. As shown in Figure 3, much better performance is obtained with the
adaptive hyper-parameters, which allow to quickly recover from the change
in distribution at t = 80. Between times t = 0 and t = 80, both errors closely
map one another at low values. Then from time t = 80 to time t ≈ 90, both
errors are are much higher (note the log-scale plot). Afterward, the model with
hyper-parameters recovers and its errors drop back to values close to the ones
obtained before the abrupt change. On the other side, the plain vanilla linear
regression, stays stocked at high error values, unable to detect the change.

5 Experiments on Financial Time-Series

In this section, we describe experiments performed on financial data: predicting
next month’s return first and second moment, for Canadian stocks. Let

rt = valuet/valuet−1 − 1

be a discrete return series (the ratio of the value of an asset at time t over its
value at time t − 1, which in the case of stocks includes dividends and capital
gains). In these experiments, our goal is to make predictions on the first and
second moment of rt+1, using information available at time t. These predictions
could be used in financial decision taking in various ways: for asset allocation
(taking risks into account), for estimating risks, and for pricing derivatives (such
as options, whose price depends on the second moment of the returns).

In the experiments we directly train our models to predict these two moments
by minimizing the squared error, i.e., we are trying to learn Et[rt+1] and Et[r2

t+1]
where Et denotes the conditional expectation using information available up to
time t.
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We have performed experiments on monthly returns and monthly squared
returns of 473 stocks from the Toronto Stock Exchange (TSE) for which at least
98 months of data were available, the earliest starting in January 1976, and the
latest data ending in December 1996.

5.1 Experimental Setup and Performance Measures

In all the experiments, we compare several models on the same data, and we use
the sequential cross-validation criterion (equation (11)) to estimate generaliza-
tion performance. For models with hyper-parameters, the “minimum” number
of training points to evaluate parameters while hyper-parameters remained fixed
was set to M ′ = 48 months (4 years). The minimum number of training points
in order to train hyper-parameters was set to M = 72 months (6 years). In
all other experiments using models without hyper-parameters, the “minimum”
number of training points was set to M = 72. The out-of-sample MSE was
computed for each stock. The results reported below concern the average MSE
over all the 473 stocks. We have also estimated the variance across stocks of the
MSE value, and the variance across stocks of the difference between the MSE
for one model and the MSE for a reference model, as described below. Using
the latter, we have tested the null hypothesis that two compared models have
identical true generalization error.

For this purpose, we have used an estimate of variance that takes into account
the autocorrelation of errors through time. Let et be a series of errors (e.g.
squared prediction error) with sample mean ē.

ē =
1
n

n∑
t=1

et (27)

We are interested in estimating its variance:

V ar[ē] =
1
n2

n∑
t=1

n∑
t′=1

Cov(et, et′). (28)

Since we are dealing with a time-series and because we do not know how to
estimate independently and reliably all the above covariances, we will assume
that the error series is covariance-stationary and that the covariance dies out as
|t−t′| increases. This can be verified empirically by drawing the autocorrelation
function of the et series. The covariance stationarity implies that

Cov(et, et′) = γ|t−t′|, (29)

where the γ’s are estimated from the sample covariances:

γ̂k =
1
n

n−k∑
t=1

(et − ē)(et+k − ē) (30)

An unbiased and convergent estimator of this variance is thus the follow-
ing (Priestley, 1981):
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V̂ ar[ē] =
1
n

(
γ̂0 + 2 ·

m∑
k=1

(1− k/m)γ̂k

)
, (31)

where limn→∞m =∞ and limn→∞m/n = 0: we have used m =
√
n.

Because there are generally strong dependencies between the errors of differ-
ent models, we have found that much better estimates of variance were obtained
by analyzing the differences of squared errors, rather than computing a variance
separately for each average:

V ar[ēA − ēB ] = V ar[ēA] + V ar[ēB ]− 2Cov[ēA, ēB ] (32)

In the tables below we give the p-value of the null hypothesis that a model
is not better than the reference model, using a normal approximation for the
differences in average sequence errors.

5.2 Models Compared in the Experiments

The following models have been considered in the comparative experiments
(note the “short name”, in bold below, used in the tables):

• Constant model: this is the reference or naive model, which has 1 free
parameter, the historical average of the past and current output observa-
tions.

• Linear 1 model is a linear regression with 1 input, which is the current
value yt of the output variable yt+1; it has 2 free parameters.

• Linear 2 model is Linear 1 model with an extra input which is the aver-
age over the last 6 months of the output variable; it has 3 free parameters.

• Linear 4 model is Linear 2 model, with two extra inputs: the value of
the output variable at the previous time step yt−1 and the average over the
last 6 time steps of the return; this model was only used for the squared
return prediction experiments; it has 5 free parameters.

• ARMA(p,q) model is a recurrent model of orders p (auto-regressive re-
currences) and q (moving average lags). It has 1+p+q free parameters; we
have tried the following combinations of p and q: (1,1),(2,1),(1,2),(2,2).

• Hyper Constant model is the Constant model with weights on the past
data (learned with the hyper-parameters); there is 1 free parameter and 2
hyper-parameters.

• Hyper Linear 1 model is the Linear 1 model with weights on the past
data; there are 2 free parameters and 2 hyper-parameters.

10



5.3 Experimental Results

The results on predicting the first moment of next month’s stocks returns are
given in table 1. Note that the p-values are one-sided but that we do two
different tests depending on whether the tested model average error is less or
greater than the reference (Constant model). In the latter case there is a “W” in
the p-value column, indicating that the performance is worse than the reference.
Significant results at the 5% level are indicated with a bold p-value. The lowest
error over all the models is indicated by a bold MSE. For the first moment, the
constant model significantly beats all the others. The results on predicting the
second moment are given in table 2. The constant model with hyper-parameters
significantly beats all the others.

MSE (sdev) p-value
Constant 7.779e-3 (2.02e-4)
Hyper Constant 8.075e-3 (2.13e-4) W <1e-7
Hyper Linear 1 9.484e-3 (5.20e-4) W1.35e-5
Linear 1 7.884e-3 (2.08e-4) W <1e-7
ARMA(1,1) 7.908e-3 (2.12e-4) W <1e-7

Table 1: Results of experiments on predicting one-month ahead stocks returns
using a variety of models. The average out-of-sample squared error times 0.5
(MSE) over all the assets are given, with estimated standard deviation of the
average in parentheses, and p-value of the null hypothesis of no difference with
the Constant model. A “W” means that the alternative hypothesis is that the
model is WORSE than the constant model. All the models are significantly
worse than the Constant model.

6 Conclusions

In this paper we have achieved the following: (1) We have introduced an exten-
sion of cross-validation, called sequential cross-validation as a model selec-
tion criterion for possibly non-i.i.d. data. (2) We have applied the method for
optimizing hyper-parameters introduced in (Bengio, 1999) to the special case of
capturing abrupt changes in non-stationary data: 2 hyper-parameters control
the weight on each past time step. (3) We have tested the method on artificial
data, showing that when there is such an abrupt change, the regression is much
improved by using and optimizing the hyper-parameters. (4) We have tested
the method on financial returns data to predict the first and second moment
of next month’s return for individual stocks. The specific conclusions of these
experiments are the following: On estimating the conditional expectation of
stock returns, the constant model significantly beats all the tested models, in-
cluding linear and ARMA models. On estimating the conditional expectation of
the squared return (which can be used to predict volatility), the constant mod-
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MSE (sdev) p-value
Constant 3.282e-3 (2.02e-4)
Hyper Constant 3.215e-3 (2.13e-4) 0.0105
Linear 1 5.208e-3 (1.87e-3) W0.117
Linear 2 5.707e-3 (1.82e-3) W0.0522
Linear 4 5.342e-3 (1.89e-3) W0.0994
ARMA(1,1) 5.617e-3 (2.22e-3) W1.94e-3
ARMA(2,1) 5.515e-3 (2.08e-3) W1.79e-3
ARMA(1,2) 5.910e-3 (2.30e-3) W2.01e-3
ARMA(2,2) 5.637e-3 (1.97e-3) W1.66e-3

Table 2: Results of experiments on predicting one-month ahead stocks squared
returns using a variety of models. The average out-of-sample squared error
times 0.5 (MSE) over all the assets are given, with estimated standard deviation
of the average in parentheses, and p-value of the null hypothesis of no difference
with the Constant model. A “W” means that the alternative hypothesis is
that the model is WORSE than the constant model. The Hyper Constant
model is significantly better than all the others while the ARMA models are all
significantly worse than the Constant reference.

el with hyper-parameters to handle non-stationarities beats the other models,
with a p-value of 1%.

What remains to be done, in the direction of research that we have ex-
plored here? In our experiments we have found that the estimates of the hyper-
parameters was very sensitive to the data, probably because of the variance of
the cross-validation criterion, so better results might be obtained by using a less
noisy model selection criterion. It would also be interesting to see if the signif-
icant improvements that we have found for Canadian stocks can be observed
on other markets, and if these predictions could be used to improve specific
decisions concerning those stocks (such as for trading options).
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