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I|nput Decay: Simple and Effective Soft Variable Selection

Nicolas Chapados and Yoshua Bengio'

Résumé/ Abstract:

Pour tenir compte des problémes de sur-entrainement qui apparaissent quand
il n'y apas assez d'exemples comparativement au nombre de variables d'entrées durant
I'apprenti ssage supervise, les approches traditionnelles sont la pénalisation de lanorme
des paramétres (weight decay) et la sélection de variables vorace. Une alternative qui
est apparue tout récemment est de garder toutes les variables, mais de mettre plus
d'emphase sur celles qui sont le plus utiles. Nous introduisons une nouvelle méthode
de régularisation, appelé "pénalisation sur la norme des entrées’ (input decay), qui
applique une plus grande pendlité relative sur les paramétres associés aux entrées qui
contribuent le moins a la fonction apprise. Cette méthode, comme la pénalisation de la
norme des paramétres (weight decay) et la sélection de variables, demande tout de
méme dappliquer une sorte de sélection de modéle. Une série d'expériences
comparatives avec cette nouvelle méthode ont été appliquées a deux taches de
régression, une qui était simulée et I'autre a partir d'une vrai probléme financier.

To deal with the overfitting problems that occur when there are not enough
examples compared to the number of input variables in supervised learning,
traditional approaches are weight decay and greedy variable selection. An alternative
that has recently started to attract attention is to keep all the variables but to put more
emphasis on the most useful ones. We introduce a new regularization method called
"input decay" that exerts more relative penalty on the parameters associated with the
inputs that contribute less to the learned function. This method, like weight decay and
variable selection, still requires to perform a kind of model selection. Successful
comparative experiments with this new method were performed both on a simulated
regression task and a real-world financial prediction task.

Mots clés : pénalisation sur la norme des entrées, sur-entrainement, réseau de
neurones

Keywords: input decay, overfitting, neural network
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1 Introduction

In a large number of applications of machine learning algorithms, we face an imple-
mentation dilemma: a great number of input features is often available to solve the
problem, but the limited size of the training set makes it seemingly impossible to
use them all without running the risk of severely overfitting the data. This dilem-
ma provides the rationale justifying classical variable selection procedures, such as
stepwise selection [5] or branch-and-bound. These methods attempt to select the
“good variables” those yielding good generalization performance, to the exclusion
of the others. We can alternatively define “good variables” to be those that are part
of the generative model of the data; however, some variables that are part of the
generative model may not, by themselves, be predictive enough to justify additional
parameters in the model. In this paper, we argue that penalized parameters might
allow to take such variables into account, albeit to a lesser extent. This enables to
account for the fact that, in many situations, the distinction between “good vari-
ables” and “bad variables” is not nearly so clear cut. Some variables are certainly
clearly useful; others are less so, but they are not totally useless.

Instead of reducing capacity by selecting a particular subset of variables, one can
use regularization methods to reduce the capacity of the model. The most clas-
sical example is the weight decay [7] or “ridge” regression, which penalizes the
squared norm of the parameter vector. However, weight decay penalizes all the
input variables in the same way. More recently, several methods have been pro-
posed to penalize input variables in different ways, depending on how “useful” they
are. Examples of this class of algorithms are the adaptive ridge estimation proce-
dure [6], the LASSO [11], and instances of hyper-parameter tuning such as those
done in [8,9] or in [1]. In this paper, we introduce a new approach to regularization
for performing a “soft” selection of the variables, which we call input decay. It is
well-suited to neural networks as well as classical linear regression, and is extremely
easy to implement. Furthermore, contrarily to the combinatorial variable selection
methods, it is computationally very cheap, requiring only a modest amount of effort
over that normally required for a ordinary neural network training.

In section 2 we introduce notation and formalize and justify the proposed penalty. In
section 3 we describe simulations in which we compare the proposed penalty method
with more classical approaches, in a controlled setup where we can easily measure
performance. In section 4, we present an application of the proposed method to a
neural network regression problem occurring in financial decision-making.

2 Input Decay

Input decay is a method for performing “soft” variable selection during the regular
training of a linear regression or non-linear neural network. The basic idea is that
the training criterion penalizes the network connections coming from the inputs
that have a less important role in determining the value of the output prediction.

Input decay works by adding a regularization term to the cost function used for
training the network; the same principle can by applied to linear regression but we
shall describe the general case of multi-layer perceptrons (MLPs). For a network
trained to minimize the mean-squared error on a length-N training set {(z;,y;)},
the cost function incorporating input decay is
1 X
C= _Z(f(ﬂﬁz‘;@) —v:)* + Cin(0), (1)

2N ¢
i=1
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FIGURE 1. Network weights affected by the FIGURE 2. The input decay penalization
input decay term C|(5>(0), for an input j in function z*/(n 4+ 2?) (solid) and its first
a one-hidden-layer MLP (thick lines). derivative (dashed), for n = 1.

where f(+;0) is the function computed by the MLP and C\p(0) is the input decay
term. The fundamental idea behind input decay is to impose a penalty on the squa-
red-norm of the weights linking a particular network input to all the hidden units.

Let 8% be the parameters on the i-th MLP layer, and 95}3 the first-layer network

weight linking input j to hidden unit A; the squared-norm of the weights from input

7 is:
H 2
q 1
ce) =3 (05)" )
h=1
where H is the number of hidden units in the network. The weights that are part
of C(J )( 0) are illustrated in figure 1. The complete contribution Cp(€) to the cost

function is obtained by a non-linear combination of the Cl(g):

Cip(0 ¢Z77+C (3)

where the hyper-parameter ¢ governs the relative important of the input decay term
in the overall cost function. The behavior of the function x2/(n + 22) is shown in
figure 2. Intuitively, this function acts as follows: if the weights emanating from
input j are small, the network must absorb a high marginal cost (locally quadratic)
in order to increase the weights; the net effect, in this case, is to bring those weights
closer to zero. On the other hand, if the weights associated with that input have
become large enough, the penalty incurred by the network turns into a constant
independent of the value of the weights; those are then free to be adjusted as
appropriate. The hyper-parameter n acts as a threshold that determines the point
beyond which the penalty becomes constant.

Input decay is similar to the weight elimination procedure [12] sometimes applied for
training neural networks, with the difference that input decay applies in a collective
way to the weights associated with a given input.

3 Experiments with Simulated Data

To ascertain the effectiveness of the input decay regularizer in principle, we per-
formed experiments with generated data in a “difficult” linear regression setting.
We compared the results obtained with the input decay method to stepwise (for-
ward) variable selection and to the benchmark ordinary least-squares (OLS) regressor
that uses all the variables. Experiments with MLPs on real data are described in
section 4.



3.1 Experimental Setting

Data Generation We made use of the experimental framework described by
Breiman [2], which consists in a linear regression problem. The generating model is

y'=Bx"+¢, (4)

where € ~ N(0,1), and B and x* are length-M vectors (the prime denotes the
transpose operation). The number of variables is fixed to M = 30. We describe
below how the coefficients vector 8 (fixed during an experiment) is chosen. The
input vector x’ is drawn from a multivariate normal distribution of mean zero, and
covariance matrix whose (4, j)-th element is pl"~7I. Our experiments focused on the
moderate-correlation (p = 0.5) and high-correlation (p = 0.9) situations.

In keeping with [2], we used three sets of 3 = (841, ..., B ) coeflicients. Within each
set, we have K = 3 clusters of non-zero coefficients, centered at ¢; = 5, ¢o = 15,
and ¢ = 25. Given the cluster centers {c}, the coefficients {5,,} are computed as

K
B =C > [(h—1|m —c)T]?, m=1,...,30, (5)
k=1

where (x)* def max(0,z); h = 1, 3,5, respectively for the first, second and third set
of coefficients; and C' is a constant chosen such that the coefficient of determination
R? of the regression on the generated data is ~ 0.75.

Experiment Details For each of p € {0.5,0.9} and h € {1, 3,5}, we generated 20
repetitions of 10000-element datasets. Within each dataset, the first 60 elements are
used for training, the input values for the following 4940 are used in conjunction
with the ADJ algorithm described below for selecting hyper-parameters, and the
remaining 5000 are used for final testing.

We compare side-by-side the performance of the following models:

e (lassical OLS regression. This involves no variable selection at all.

e Input decay, as described above, but for linear regression. Since we don’t know a
priori what are good values for the hyper-parameters ¢ and 7, we train the mod-
els for every combination of ¢ € {0.001,0.003,0.01,0.03,0.1,0.3,1.0, 3.0,10.0}
and n € {0.001,0.003,0.01,0.03,0.1,0.3,1.0}, in addition to the “degenerate
models” {¢ = 0,17 = 100} and {¢ = 100,17 = 1075} (large and small capacity
models). We then select one model using the ADJ algorithm described below.

e [Forward variable selection. We add variables one at a time (allowing up to
30 variables), and we choose the subset of variables giving the best estimated
generalization error using 12-fold cross validation on the training set.

3.2 Review of the ADJ Model Selection Algorithm

The ADJ model selection algorithm, introduced by Shuurmans [10], is based on the
idea of exploiting the natural geometry of the distribution of input vectors to achieve
a re-ranking of competing models on the basis of those that can be “trusted” the
most. The algorithm only needs access to unlabeled examples drawn from the input
distribution, in order to estimate this distribution.

The full justification and geometric intuition behind ADJ are given in [10]; we give
here an operational description. First, ADJ needs a partial order < on hypothesis



classes, ordering the classes by their complexity. For input decay, given hypothesis
classes Hy and H,, we define the order to be:

Hi <Hy <= (¢1>202 N m <m2) A (d1# d2 V 1 # ma2), (6)

where ¢ and 7; are the hyper-parameters associated with H;, and correspondingly
for H,. Intuitively, this order corresponds to the learning capacity allowed by the
hyper-parameters. (We note that a larger input decay parameter ¢ reduces the
capacity; in contrast, a smaller threshold 7 increases it.)

Next, the expected distance between two hypotheses h; and ho is defined as
d(hi,h2) = (3 [x(hi(z) — ho(x))? dPX)l/Z, where the integral is over the input
distribution space; similarly, the empirical distance on the training set {(x;,y;)} of

length N is d(hy, hs) = (557 2o (ha () — hg(az:i))Q)l/2 (note that the computation
of this empirical distance between two hypotheses does not use the targets y; from
the training set.)

Given a set of hypotheses {h}} (obtained, as usual, by minimizing the empirical
error on the training set), each having obtained an empirical RMSE on the training
set of RMSE; = (5 > (B (i) — yi)2)1/2, the ADJ algorithm re-ranks the RMSE; as
follows:

@ It finds the largest observed ratio of expected distance to empirical distance
for the “smaller” hypotheses in the partial order <:
r= wmax d(h )/ d(h,B). (7)

9 k J
@ It adjusts the empirical mj by this ratio: m; =7 mj.

The model ultimately selected by the algorithm is the one having the smallest
adjusted RMSE .

The computation of expected distance d(h}, h;‘) between two hypotheses requires a
model of the input distribution Px. This model can be estimated by having only
access to unlabeled data drawn from the input distribution; either kernel estimators
or Monte Carlo methods can be used for this purpose. In our experiments, we used
4940 (unlabeled) vectors (separate from either the training or the test set) drawn
from the input distribution to form a Monte Carlo estimate of the expected distance.

3.3 Results

The results of the experiments are summarized in tables 1 and 2. The first table gives
the mean-squared errors obtained by each method, averaged over the 20 generated
training and test sets. Standard errors under a Student ¢i9 distribution are also
given. From this table, we note that input decay model selected by ADJ performs
much better than either a standard OLS regression using all the variables or a
regression after stepwise variable selection. This is true for both moderately (p =
0.5) and highly correlated (p = 0.9) input variables, and for all coefficient vectors
(h=1,3,5).

Table 2 formally confirms these observations by tabulating the p-values obtained
under the t19 distribution for the MSE differences between input decay and the
other two methods. All p-values are highly statistically significant. In addition, the
column ‘# significant’ lists the number of times, out of 20 repetitions, that input
decay was found to be significantly better than the other method, using paired
t-tests on the test set results.



TABLE 1. Test MSE obtained by the regression with input decay, versus a standard OLS
regression and one using stepwise variable selection. The results are averaged over 20
different training and test sets.

Input Decay OLS Stepwise Selection
p h Avg. MSE Std Err. Avg. MSE Std Err. Avg. MSE Std Err.
0.5 1 0.866 (0.027) 1.046 (0.050) 1.085 (0.087)
0.5 3 0.813 (0.027) 1.046 (0.050) 1.354 (0.101)
0.5 5 0.740 (0.019) 1.046 (0.050) 1.104 (0.040)
09 1 0.730 (0.028) 1.045 (0.050) 0.848 (0.029)
09 3 0.693 (0.023) 1.045 (0.050) 0.810 (0.026)
0.9 5 0.700 (0.020) 1.045 (0.050) 0.840 (0.041)

TABLE 2. MSE differences between regression with input decay and the other two methods,
averaged over 20 generated datasets. The p-values result from t-tests over sequences of
20 differences. The ‘# Significant’ columns list the number of experiments in which input
decay was found significantly better than the competing method (computed with a paired
t-test on the test sets for the 20 datasets.)

Input Decay vs. OLS Input Decay vs. Stepwise Selection
p h | MsE diff. p-value  # Significant | MSE diff. p-value  # Significant
05 1 —0.180 < 0.001x 19/20 —0.219 0.030% 12/20
05 3 —0.233 < 0.001x 18/20 —0.541 < 0.001x 15/20
05 5 —0.306 < 0.001x 19/20 —0.364 < 0.001x 19/20
09 1 —0.315 < 0.001x 20/20 —0.117 0.008x 15/20
09 3 —0.352 < 0.001% 20/20 —0.118 0.001x 16/20
09 5 —0.348 < 0.001x 20/20 —0.143 0.004« 14/20

We conclude from these results that linear regression with input decay, given a
reasonable model of the input distribution and a good model selection algorithm
such as the ADJ algorithm, performs significantly better than either the benchmark
OLS regression or stepwise variable selection.

4 Experiments with an Asset-Allocation Problem

We also applied input decay to a real-world asset-allocation problem. Our exper-
iments consisted in allocating among the 14 sectors (sub-indices) of the Toronto
Stock Exchange TSE 300 index. Our input variables consisted in technical indica~
tors related to each asset, including moving averages (at several depths) of asset
returns and estimated asset volatilities; a total of 75 input variables were used.

We used standard MLPs to make the asset allocation decisions. They were trained
to make forecasts of future asset performance, those forecasts serving as input to a
fixed decision system. In all cases, both ordinary weight decay and the input decay
regularizer were incorporated into the cost functions used for training the MLPs.
The complete experimental setup, including details on our investment framework
that allocates assets according to a value-at-risk (VaR) constraint, is explained in
[3,4].

We compared the performance of various MLP topologies, varying the weight decay
level, the input decay level (¢ in eq. (3)) and the number of hidden units. In all cases,
the input decay threshold 7 was kept fixed at 1.0. The performance criterion was
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a financial measure (the average return per period, normalized by the value-at-risk
incurred) rather than a more conventional mean-squared error criterion.

Extensive statistical analysis of the results is presented elsewhere [3,4]. We per-
formed analyses of variance (ANOVA) to single out the effects of specific factors on
the overall performance. In summary, we obtained the following results (we reserve
the term “significant” to denote statistical significance at least at the 0.05 level):

e The effect of input decay is always significant (an example appears in figure 3).
e Weight decay is never significant.

e No higher-order interaction between the above factors is significant (as assessed
by the ANOVA).

5 Conclusion

We introduced a new penalty-based method for soft variable selection that is very
well-suited to multi-layer neural networks and classical linear regression settings.
We showed this method to be successful on difficult simulated regression tasks and
a real-world financial application. Moreover, it is exceedingly easy to implement,
and, compared with combinatorial variable selection, is quite cheap computationally.
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