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Résumé / Abstract 
 
La similarité entre objets est un élément fondamental de plusieurs algorithmes 
d'apprentissage.  La plupart des méthodes non paramétriques supposent cette similarité 
constante, mais des travaux récents ont montré les avantages de les apprendre, en particulier 
pour exploiter les invariances locales dans les données ou pour capturer la variété 
possiblement non linéaire sur laquelle reposent la plupart des données.  Nous proposons une 
nouvelle méthode d'estimation de densité à noyau non paramétrique qui capture la structure 
locale d'une variété sous-jacente en utilisant les vecteurs propres principaux de matrices de 
covariance locales régularisées.  Les expériences d'estimation de densité montrent une 
amélioration significative sur les estimateurs de densité de Parzen.  Les estimateurs de densité 
peuvent aussi être utilisés à l'intérieur de classificateurs de Bayes, menant à des taux de 
classification similaires à ceux des SVMs, et très supérieurs au classificateur de Parzen. 
 

Mots clés : estimation de densité, modèles non paramétriques, modèles de 
variétés, classification probabiliste. 

 
 
 
The similarity between objects is a fundamental element of many learning algorithms. Most 
non-parametric methods take this similarity to be fixed, but much recent work has shown the 
advantages of learning it, in particular to exploit the local invariances in the data or to 
capture the possibly non-linear manifold on which most of the data lies. We propose a new 
non-parametric kernel density estimation method which captures the local structure of an 
underlying manifold through the leading eigenvectors of regularized local covariance 
matrices. Experiments in density estimation show significant improvements with respect to 
Parzen density estimators. The density estimators can also be used within Bayes classifiers, 
yielding classification rates similar to SVMs and much superior to the Parzen classifier. 

 
Keywords: density estimation, non-parametric models, manifold models, 
probabilistic classifiers. 
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1 Introduction
In [1], while attempting to better understand and bridge the gap between the good perfor-
mance of the popular Support Vector Machines and the more traditional K-NN (K Nearest
Neighbors) for classification problems, we had suggested a modified Nearest-Neighbor
algorithm. This algorithm, which was able to slightly outperform SVMs on several real-
world problems, was based on the geometric intuition that the classes actually lived “close
to” a lower dimensional non-linear manifold in the high dimensional input space. When
this was not properly taken into account, as with traditional K-NN, the sparsity of the data
points due to having a finite number of training samples would cause “holes” or “zig-zag”
artifacts in the resulting decision surface, as illustrated in Figure 1.

Figure 1: A local view of the decision surface, with “holes”, produced by the Nearest Neighbor
when the data have a local structure (horizontal direction).

The present work is based on the same underlying geometric intuition, but applied to the
well known Parzen windows [2] non-parametric method for density estimation, using Gaus-
sian kernels.

Most of the time, Parzen Windows estimates are built using a “spherical Gaussian” with
a single scalar variance (orwidth) parameterσ2. It is also possible to use a “diagonal
Gaussian”, i.e. with a diagonal covariance matrix, or even a “full Gaussian” with a full
covariance matrix, usually set to be proportional to the global empirical covariance of the
training data. However these are equivalent to using a spherical Gaussian on preprocessed,
normalizeddata (i.e. normalized by subtracting the empirical sample mean, and multiply-
ing by the inverse sample covariance). Whatever the shape of the kernel, if, as is customary,
a fixed shapeis used, merely centered on every training point, the shape can only compen-
sate for theglobal structure(such as global covariance) of the data.

Now if the true density that we want to model is indeed “close to” a non-linear lower di-
mensional manifold embedded in the higher dimensional input space, in the sense that most
of the probability density is concentrated around such a manifold (with a small noise com-
ponent away from it), then using Parzen Windows with a spherical or fixed-shape Gaussian
is probably not the most appropriate method, for the following reason.

While the true density mass, in the vicinity of a particular training pointxi, will be mostly
concentrated in a few local directions along the manifold, a spherical Gaussian centered on
that point will spread its density mass equally along all input space directions, thus giving
too much probability to irrelevant regions of space and too little along the manifold. This
is likely to result in an excessive “bumpyness” of the thus modeled density, much like the
“holes” and “zig-zag” artifacts observed in KNN (see Fig. 1 and Fig. 2).

If the true density in the vicinity ofxi is concentrated along a lower dimensional manifold,
then it should be possible to infer the local direction of that manifold from the neighbor-
hood ofxi, and then anchor onxi a Gaussian “pancake” parameterized in such a way that
it spreads mostly along the directions of the manifold, and is almost flat along the other
directions. The resulting model is a mixture of Gaussian “pancakes”, similar to [3], mix-
tures of probabilistic PCAs [4] or mixtures of factor analyzers [5, 6], in the same way that
the most traditional Parzen Windows is a mixture of spherical Gaussians. But it remains a
memory-based method, with a Gaussian kernel centered on each training points, yet with a
differently shapedkernel for each point.



2 The Manifold Parzen Windows algorithm
In the following we formally define and justify in detail the proposed algorithm. LetX be
ann-dimensional random variable with values inIRn, and anunknown probability density
functionpX (.). Our training setcontainsl samples of that random variable, collected in a
l × n matrix X whose rowxi is thei-th sample. Our goal is to estimate the densitypX .
Our estimator̂pmp(.) has the form of a mixture of Gaussians, but unlike the Parzen density
estimator, its covariancesCi are not necessarily spherical and not necessarily identical
everywhere:

p̂mp(x) =
1
l

l∑
i=1

Nxi,Ci
(x), (1)

whereNµ,C(x) is the multivariate Gaussian density with mean vectorµ and covariance
matrixC:

Nµ,C(x) =
1√

(2π)n|C|
e−

1
2 (x−µ)′C−1(x−µ) (2)

where|C| is the determinant ofC. How should we select the individual covariancesCi?
From the above discussion, we expect that if there is an underlying “non-linear principal
manifold”, those gaussians would be “pancakes” aligned with the plane locally tangent
to this underlying manifold. The only available information (in the absence of further
prior knowledge) about this tangent plane can be gathered from the training samples int the
neighborhood ofxi. In other words, we are interested in computing theprincipal directions
of the samples in the neighborhood ofxi.

For generality, we can define asoft neighborhoodof xi with a neighborhood kernel
K(x;xi) that will associate an influence weight to any pointx in the neighborhood of
xi. We can then compute the weighted covariance matrix

CKi
=

∑
j=1..l,j 6=iK(xj ;xi)(xj − xi)′(xj − xi)∑

j=1..l,j 6=iK(xj ;xi)
(3)

where(xj − xi)′(xj − xi) denotes the outer product.

K(x, xi) could be a spherical Gaussian centered onxi for instance, or any other positive
definite kernel, possibly incorporating prior knowledge as to what constitutes a reasonable
neighborhood for pointxi. Notice that ifK(x, xi) is a constant (uniform kernel),CKi

is
the global training sample covariance. As an important special case, we can define ahard
k-neighborhoodfor training samplexi by assigning a weight of1 to any point no further
than thek-th nearest neighbor ofxi among the training set, according to some metric such
as the Euclidean distance in input space, and assigning a weight of0 to points further than
thek-th neighbor. In that case,CKi is the unweighted covariance of thek nearest neighbors
of xi.

Notice what is happening here: we start with a possibly rough prior notion of neighborhood,
such as one based on the ordinary Euclidean distance in input space, and use this to compute
a local covariance matrix, which implicitly defines a refined local notion of neighborhood,
taking into account the local direction observed in the training samples.

Now that we have a way of computing a local covariance matrix for each training point, we
might be tempted to use this directly in equations 2 and 1. But a number of problems must
first be addressed:

• Equation 2 requires theinverse covariance matrix, whereasCKi
is likely to be ill-

conditioned. This situation will definitely arise if we use ahard k-neighborhoodwith
k < n. In this case we get a Gaussian that is totally flat outside of the affine subspace
spanned byxi and itsk neighbors, and it does not constitute a proper density inIRn. A
common way to deal with this problem is to add a small isotropic (spherical) Gaussian



noise of varianceσ2 in all directions, which is done by simply addingσ2 to the diagonal of
the covariance matrix:Ci = CKi + σ2I.

• Even if we regularizeCi by addingσ2, when we deal with high dimensional spaces,
it would be prohibitive in computation time and storage to keep and use the full inverse
covariance matrix as expressed in 2. This would in effect multiply both the time and storage
requirement of the already expensive ordinary Parzen Windows byn + 1. So instead, we
use a different, more compact representation of the inverse Gaussian, by storing only the
eigenvectors associated with the first few largest eigenvalues ofCi, as described below.

The eigen-decomposition of a covariance matrixC can be expressed as:C = V DV ′,
where the columns ofV are the orthonormal eigenvectors andD is a diagonal matrix with
the eigenvaluesλ1 . . . λn, that we will suppose sorted in decreasing order, without loss of
generality.

The firstd eigenvectors with largest eigenvalues correspond to theprincipal directionsof
the local neighborhood, i.e. the high variance local directions of the supposed underlying
d-dimensional manifold (but the true underlying dimension is unknown and may actually
vary across space). The last few eigenvalues and eigenvectors are but noise directions with
a small variance. So we may, without too much risk, force those last few components to
the same low noise levelσ2. We have done this by zeroing the lastn − d eigenvalues
(by considering only the firstd leading eigenvalues) and then addingσ2 to all eigenvalues.
This allows us to store only the firstd eigenvectors, and to later computeNµ,C(x) in time
O(n · d) instead ofO(n2). Thus both the storage requirement and the computational cost
when estimating the density at a test point is only aboutd+1 times that of ordinary Parzen.
It can easily be shown that such an approximation of the covariance matrix yields to the
following computation ofNµ,C(x):

Algorithm LocalGaussian(x, xi, Vi, λi, d, σ2)

Input : test vectorx ∈ IRn, training vectorxi ∈ IRn, d eigenvaluesλij , d eigenvectors
in the columns ofVi, dimensiond, and the regularization hyper-parameterσ2.
(1) r = d log(2π) +

∑d
j=1 log(λj + σ2) + (n− d) log(σ2)

(2) q = 1
σ2 ||x− xi||2 +

∑d
j=1(

1
λj
− 1

σ2 )||V ′
j (x− xi)||2

Output : Gaussian densitye−0.5(r+q)

In the case of thehard k-neighborhood, the training algorithm pre-computes the local prin-
cipal directionsViof thek nearest neighbors of each training pointi (in practice we compute
them with a SVD rather than an eigen-decomposition of the covariance matrix, see below).
Note that withd = 0, we trivially obtain the traditional Parzen windows estimator.

Algorithm MParzen::Train( X, d, k, σ2)

Input : training set matrixX with l rowsxi ∈ IRn, chosen number of principal direc-
tionsd, chosen number of neighborsk ≥ d, and regularization hyper-parameterσ2.
(1) For i ∈ {1, 2, . . . , l}
(2) Collectk nearest neighborsxj of xi, and putxj − xi in the rows of matrixM .
(3) Perform a partial singular value decomposition ofM , to obtain the leadingd
singular valuessj (j ∈ {1, . . . , d}) and singular column vectorsVi·j of M .

(4) For j ∈ {1, . . . , d}, let λij = σ2 + s2
j

l

Output : The modelM = (X, V, λ, k, d, σ2), whereV is an l × n × d tensor that
collects all the eigenvectors andλ is al × d matrix with all the eigenvalues.



Algorithm MParzen::Test( x,M)

Input : test pointx and modelM = (X, V, λ, k, d, σ2).
(1) s← 0
(2) For i ∈ {1, 2, . . . , l}
(3) s← s+ LocalGaussian(x, xi, Vi, λi, d, σ2)
Output : manifold Parzen estimator̂pmp(x) = s

l .

3 Related work
As we have already pointed out, Manifold Parzen Windows, like traditional Parzen Win-
dows and so many other density estimation algorithms, results in defining the density as
a mixture of Gaussians. What differs is mostlyhow those Gaussians and their parameters
are chosen. The idea of having a parameterization of each Gaussian that orients it along
the local principal directions also underlies the already mentioned work on mixtures of
Gaussian pancakes [3], mixtures of probabilistic PCAs [4], and mixtures of factor analy-
sers [5, 6]. All these algorithms typically model the density using a relatively small number
of Gaussians, whose centers and parameters must be learnt with some iterative optimisation
algorithm such as EM (procedures which are known to be sensitive to local minima traps).
By contrast our approach is, like the original Parzen windows, heavily memory-based. It
avoids the problem of optimizing the centers by assigning a Gaussian to every training
point, and uses simple analytic SVD to compute the local principal directions for each.

Another successful memory-based approach that uses local directions and inspired our
work is the tangent distance algorithm [7]. While this approach was initially aimed at
solving classification tasks with a nearest neighbor paradigm, some work has already been
done in developing it into a probabilistic interpretation for mixtures with a few gaussians,
as well as for full-fledged kernel density estimation [8, 9]. The main difference between
our approach and the above is that the Manifold Parzen estimator does not require prior
knowledge, as it infers the local directions directly from the data, although it should be
easy to also incorporate prior knowledge if available.

We should also mention similarities between our approach and theLocal Linear Embed-
ding and recent related dimensionality reduction methods [10, 11, 12, 13]. There are also
links with previous work on locally-definedmetricsfor nearest-neighbors [14, 15, 16, 17].
Lastly, it can also be seen as an extension along the line of traditional variable and adaptive
kernel estimators that adapt the kernel width locally (see [18] for a survey).

4 Experimental results
Throughout this whole section, when we mention Parzen Windows (sometimes abbreviated
Parzen), we mean ordinary Parzen windows using a spherical Gaussian kernel with a single
hyper-parameterσ, the width of the Gaussian.

When we mention Manifold Parzen Windows (sometimes abbreviatedMParzen), we used
a hard k-neighborhood, so that the hyper-parameters are: the number of neighborsk, the
number of retained principal componentsd, and the additional isotropic Gaussian noise
parameterσ.

When measuring the quality of a density estimatorp̂(x), we used the average negative log
likelihood: ANLL = − 1

m

∑m
i=1 log p̂(xi) with them examplesxi from a test set.

4.1 Experiment on 2D artificial data

A training set of 300 points, a validation set of 300 points and a test set of 10000 points
were generated from the following distribution of two dimensional(x, y) points:

x = 0.04 t sin(t) + εx, y = 0.04 t cos(t) + εy



wheret ∼ U(3, 15), εx ∼ N(0, 0.01), εy ∼ N(0, 0.01), U(a, b) is uniform in the interval
(a, b) andN(µ, σ) is a normal density.

We trained an ordinary Parzen, as well as MParzen withd = 1 andd = 2 on the training
set, tuning the hyper-parameters to achieve best performance on the validation set. Figure 2
shows the training set and gives a good idea of the densities produced by both kinds of algo-
rithms (as the visual representation for MParzen withd = 1 andd = 2 did not appear very
different, we show only the cased = 1). The graphic reveals the anticipated “bumpyness”
artifacts of ordinary Parzen, and shows that MParzen is indeed able to better concentrate
the probability density along the manifold, even when the training data is scarce.

Quantitative comparative results of the two models are reported in table 1

Table 1: Comparative results on the artificial data (standard errors are in parenthesis).

Algorithm Parameters used ANLL on test-set
Parzen σ = 0.0173 -1.183 (0.016)

MParzen d = 1, k = 11, σ = 0.09 -1.466 (0.009)
MParzen d = 2, k = 10, σ = 0.00001 -1.419 (0.009)

Several points are worth noticing:

• BothMParzenmodels seem to achieve a lower ANLL than ordinary Parzen (even
though the underlying manifold really has dimensiond = 1), and with more con-
sistency over the test sets (lower standard error).

• The optimal widthσ for ordinaryParzenis much larger than the noise parameter
of the true generating model (0.01), probably because of the finite sample size.

• The optimal regularization parameterσ for MParzenwith d = 1 (i.e. supposing
a one-dimensional underlying manifold) is very close to the actual noise param-
eter of the true generating model. This suggests that it was able to capture the
underlying structure quite well. Also it is the best of the three models, which is
not surprising, since the true model is indeed a one dimensional manifold with an
added isotropic Gaussian noise.

• The optimal additional noise parameterσ for MParzenwith d = 2 (i.e. supposing
a two-dimensional underlying manifold) is close to 0, which suggests that the
model was able to capture all the noise in the second “principal direction”.

4.2 Density estimation on OCR data

In order to compare the performance of both algorithms for density estimation on a real-
world problem, we estimated the density of one class of the MNIST OCR data set, namely
the “2” digit. The available data for this class was divided into 5400 training points, 558
validation points and 1032 test points. Hyper-parameters were tuned on the validation
set. The results are summarized in Table 2, using the performance measures introduced
above (average negative log-likelihood). Note that the improvement with respect to Parzen
windows is extremely large and of course statistically significant.

Table 2: Density estimation of class ’2’ in the MNIST data set. Standard errors in parenthesis.
Algorithm Parameters used validation ANLL test ANLL

Parzen σ = 0.19 -197.27 (4.18) -197.19 (3.55)
MParzen d = 50, k = 80, σ = 0.09 -696.42 (5.94) -695.15 (5.21)



4.3 Classification performance

To obtain a probabilistic classifier with a density estimator we train an estimator

p̂c(x) = p̂(x|c) for each classc, and apply Bayes’ rule to obtain̂P (c|x) = p̂(x|c)P̂ (c)∑
c′ p̂(x|c′)P̂ (c′)

.

When measuring the quality of a probabilistic classifierP̂ (c|x), we used the negative con-

ditional log likelihood: ANCLL
def= − 1

m

∑m
i=1 log P̂ (ci|xi), with them examples(ci, xi)

(correct class, input) from a test set.

This method was applied to both the Parzen and the Manifold Parzen density estimators,
which were compared with state-of-the-art Gaussian SVMs on the full USPS data set. The
original training set (7291) was split into a training (first 6291) and validation set (last
1000), used to tune hyper-parameters. The classification errors for all three methods are
compared in Table 3, where the hyper-parameters are chosen based on validation classifi-
cation error. The log-likelihoods are compared in Table 4, where the hyper-parameters are
chosen based on validation ANCLL. Hyper-parameters for SVMs are the box constraintC
and the Gaussian widthσ. MParzen has the lowest classification error and ANCLL of the
three algorithms.

Table 3: Classification error obtained on USPS with SVM, Parzen windows and Manifold Parzen
windows classifiers.

Algorithm validation error test error parameters
SVM 1.2% 4.68% C = 100, σ = 8
Parzen 1.8% 5.08% σ = 0.8

MParzen 0.9% 4.08% d = 11, k = 11, σ2 = 0.1

Table 4: Comparative negative conditional log likelihood obtained on USPS.
Algorithm valid ANCLL test ANCLL parameters

Parzen 0.1022 0.3478 σ = 0.8
MParzen 0.0658 0.3384 d = 17, k = 17, σ2 = 0.75

5 Conclusion
The rapid increase in computational power now allows to experiment with sophisticated
non-parametric models such as those presented here. They have allowed to show the use-
fulness of learning the local structure of the data through a regularized covariance matrix
estimated for each data point. By taking advantage of local structure, the new kernel den-
sity estimation method outperforms the Parzen windows estimator. Classifiers built from
this density estimator yield state-of-the-art knowledge-free performance, which is remark-
able for a not discriminatively trained classifier. Besides, in some applications, the accurate
estimation of probabilities can be crucial, e.g. when the classes are highly imbalanced.

Future work should consider other alternative methods of estimating the local covariance
matrix, for example as suggested here using a weighted estimator, or taking advantage of
prior knowledge (e.g. the Tangent distance directions).
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Figure 2: Illustration of the density estimated by ordinary Parzen Windows (left) and Manifold
Parzen Windows (right). The two images on the bottom are a zoomed area of the corresponding image
at the top. The 300 training points are represented as black dots and the area where the estimated
density p̂mp(x) is above 1.0 is painted in gray. The excessive “bumpyness” and holes produced
by ordinary Parzen windows model can clearly be seen, whereas Manifold Parzen density is better
aligned with the underlying manifold, allowing it to even successfully “extrapolate” in regions with
few data points but high true density.


