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Robust dynamic space-time panel data models using 
ε-contamination: An application to crop yields and climate 

change 
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Abstract/Résumé 

This paper extends the Baltagi et al. (2018, 2021) static and dynamic ε-contamination papers to 
dynamic space-time models. We investigate the robustness of Bayesian panel data models to 
possible misspecification of the prior distribution. The proposed robust Bayesian approach departs 
from the standard Bayesian framework in two ways. First, we consider the ε-contamination class of 
prior distributions for the model parameters as well as for the individual effects. Second, both the 
base elicited priors and the ε-contamination priors use Zellner (1986)’s g-priors for the variance-
covariance matrices. We propose a general “toolbox” for a wide range of specifications which 
includes the dynamic space-time panel model with random effects, with cross-correlated effects `a 
la Chamberlain, for the Hausman-Taylor world and for dynamic panel data models with 
homogeneous/heterogeneous slopes and cross-sectional dependence. Using an extensive Monte 
Carlo simulation study, we compare the finite sample properties of our proposed estimator to those 
of standard classical estimators. We illustrate our robust Bayesian estimator using the same data as 
in Keane and Neal (2020). We obtain short run as well as long run effects of climate change on corn 
producers in the United States. 
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1. Introduction

The space-time panel data models provide a general structure which accommodates feedback

from lagged endogenous values, i.e., state dependence, along with the spatial spillovers, spatial

heterogeneity as well as interactive effects. Yu et al. (2008) have introduced a dynamic space-

time panel specification with fixed effects, where both N (number of spatial sites or individuals)

and T (number of time points) are large, and which allows one to treat spatial dependence in

the dependent variable vector (see also Lee and Yu (2015)). They propose a concentrated quasi-

maximum likelihood (QML) estimation and a bias correction for the estimators. They show that

when T grows faster than N1/3, the correction asymptotically eliminates the bias. Su and Yang

(2015) propose a QML estimation of dynamic panel models with spatial errors for short panels

(N large, T fixed), both for random effects and fixed effects worlds. They propose a residual-

based bootstrap method for estimating the standard errors. This approach yields good results

in finite samples only if the assumptions about the initial observations are satisfied.

As is well known, the ordinary least squares estimation of a spatial dynamic panel data model

generally yields inconsistent parameter estimates due to the potential correlation between the

spatially lagged dependent variables and the error term. Recently, Jin et al. (2020) proposed an

efficient distribution-free least squares estimation method that utilizes the eigen decomposition

of a weight matrix. They also present a penalized model selection procedure based on the

proposed method. Their approach is very powerful compared to the well-known instrumental

variable techniques and its applicability is demonstrated via a high-dimensional data example.

Unfortunately, when N or T is small, their estimator is seriously biased even when using their

proposed bias-corrected estimator.1

Parent and LeSage (2010) considered a dynamic space-time panel specification with random

effects and proposed a Bayesian Markov Chain Monte Carlo (MCMC) method. They used a

restriction on the parameter associated with spatial effects from the previous period, δ in equation

(1) below, and showed that the restriction allows one to separate the space and time dimensions.

This greatly simplifies the computation of the space-time covariance structure as well as the own-

and cross-partial derivatives of the model (see also Parent and LeSage (2011)). Debarsy et al.

(2012) considered in a dynamic space-time Durbin model with random effects. They remove

the restriction on δ and, following Parent and LeSage (2010), use the same MCMC method

where all parameters are a priori independent. LeSage et al. (2019) also proposed a dynamic

space-time panel data model without individual-specific effects. Considering proper priors for the

parameters and assuming that the joint distribution of these parameters is uniformly distributed,

they adopt Metropolis Hastings steps and a reversible jump procedure for some number of initial

MCMC draws to produce proposal values for the vector of parameters.

The present paper develops a general framework for robust Bayesian analysis of dynamic

space-time panel data models using ε-contamination class of prior distributions. Bayesian infer-

ence procedures based on a single base prior distribution ignore the fact that a prior distribution

in the neighborhood of this base prior may also represent the prior belief of the experimenter.

Robust Bayes inference procedures based on a class of prior distributions usually perform better

and are more robust in the sense that if the available base prior is irrelevant, the procedure

1We thank Yuehua Wu for the helpful discussions on this issue. Unfortunately, their bias correction method
is ineffective when T < 50 irrespective of N .

1



articulately discards the base prior in favor of the sample information. The ε-contamination

class of prior distributions, which is a mixture of a base prior and a contamination class of pri-

ors, is an attractive class of prior distributions. For a more authoritative discussion, one may

refer to Berger (1985), Berger and Berliner (1986), Chaturvedi (1996), Baltagi et al. (2018) and

the references cited therein. For selecting a specific prior distribution from the contamination

class of priors, Berger and Berliner (1986) considered the type-II maximum likelihood (ML-II)

procedure. ML-II was named and extensively studied in Good (1965), and it can be seen as a

particular instance of empirical Bayes which, in general, “estimates” the hyperparameters from

the data.2 Section 2 presents the robust dynamic space-time panel data models. Section 3

derives the Type-II maximum likelihood posterior mean and the variance-covariance matrix of

the coefficients utilizing a two-stage hierarchy approach. The finite sample performance of the

proposed robust Bayes estimator is investigated in Section 4 using extensive Monte Carlo ex-

periments. In Section 5, we use the same data as in Keane and Neal (2020) to illustrate our

robust Bayesian estimator applied to a dynamic space-time mixed specification model of crop

yields and climate change. One of the main benefits of such dynamic space-time mixed model

is its ability to estimate short-run and long-run effects through the impact multiplier (weather)

and the τ -period-ahead dynamic multiplier (climate) of a permanent change in the temperature

or precipitations at time t. Finally, section 6 gives some concluding remarks.

2. A robust dynamic space-time panel data model

Let us start with the Gaussian dynamic space-time mixed model:

yti = φyt−1,i + ρ

N∑
j=1

wijytj + δ

N∑
j=1

wijyt−1,j +X ′tiβ +D′tibi + uti , i = 1, ..., N , t = 2, ..., T,

= Z ′tiθ +D′tibi + uti (1)

with Z ′ti =

yt−1,i,

N∑
j=1

wijytj ,

N∑
j=1

wijyt−1,j , X
′
ti

 and θ′ = [φ, ρ, δ, β′]
′
,

where the data is ordered in matrix form such that i is a faster index than t, X ′ti is a (1×Kx)

vector of explanatory variables including the intercept, and β is a (Kx × 1) vector of parameters.

Let D′ti denote a (1× k2) vector of covariates and bi a (k2 × 1) vector of parameters. The

subscript i of bi indicates that the model allows for heterogeneity on the D variables. uti is a

remainder term assumed to be normally distributed, i.e. uti ∼ N
(
0, τ−1

)
. The distribution of uti

is parametrized in terms of its precision τ rather than its variance σ2
u (= 1/τ). The WN = (wij)

is a (N ×N) spatial weights matrix whose diagonal elements are zero. Moreover, we also assume

that WN is row-normalized and that all eigenvalues are real and less than or equal to one.

Connectivity between the N individuals is represented by the WN spatial weights matrix. The

distance between individuals i and j may be based on geography or some measure of economic

distance, or defined as rook-style or queen-style contiguities, or as the k-nearest neighbors for

instance.

2“We consider the most commonly used method of selecting a hopefully robust prior in Γ (the ε-contamination
class of prior distributions), namely choice of that prior π which maximizes the marginal likelihood m(y|π) over
Γ. This process is called Type II maximum likelihood by Good (1965)” (Berger and Berliner (1986) page 463).
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Pooling the N individuals for one time period, we can write

yt = φyt−1 + ρWNyt + δWNyt−1 +Xtβ +Dtb+ ut , t = 2, ..., T, (2)

= Ztθ +Dtb+ ut with Zt = [yt−1,WNyt,WNyt−1, Xt]

where yt is the N -dimensional vector of the dependent variable, yt−1 its lagged value, Xt the

(N ×Kx) matrix of covariates, Dt the (N ×K2) (with K2 = Nk2) matrix of other covariates,

Dt = diag (D′ti)i=1,...,N and b = (b′1, b
′
2, . . . , b

′
N )
′
, (3)

β and b are (Kx×1) and (K2×1) vectors of coefficients associated with the covariates Xt and Dt.

φ is the autoregressive time dependence parameter, ρ is the spatial dependence parameter and

δ is the spatio-temporal diffusion parameter.3 In order to ensure stable dynamic estimation, Yu

et al. (2008), Parent and LeSage (2011) or LeSage et al. (2019) show that stationary conditions

are satisfied if:4 
φ+ (ρ+ δ)$max < 1 if ρ+ δ ≥ 0

φ+ (ρ+ δ)$min < 1 if ρ+ δ < 0

φ− (ρ− δ)$max > −1 if ρ− δ ≥ 0

φ− (ρ− δ)$min > −1 if ρ− δ < 0

(4)

where $min and $max are the minimum and maximum eigenvalues of the spatial weights matrix

WN . Pooling the T − 1 time periods, we get the dual form of the model:

y = φy−1 + ρy∗ + δy∗−1 +Xβ +Db+ u = Zθ +Db+ u, (5)

where y−1 is the (T−1)N -dimensional vector of the lagged dependent variable, y∗ is the (T−1)N -

dimensional vector of the spatially weighted dependent variable: y∗ =
(
y∗2,1, ..., y

∗
2,N , ..., y

∗
T,1, ..., y

∗
T,N

)′
with y∗ti =

∑N
j=1 wijytj . y

∗
−1 is the (T − 1)N -dimensional vector of the spatially weighted lagged

dependent variable: y∗−1 =
(
y∗1,1, ..., y

∗
1,N , ..., y

∗
T−1,1, ..., y

∗
T−1,N

)′
with y∗t−1,i =

∑N
j=1 wijyt−1,i

and θ is a K1-vector of parameters with K1 = Kx + 3.

In a Bayesian framework, it is customary to constrain the priors of the space-time parameters

φ, ρ and δ over the stationary interval as in equation (4) and to use products of independent

uniform distributions or mixtures of uniform distributions (see section A of the supplementary

material for more discussion). In a non-spatial framework, much has been written about the

desirability of imposing stationarity conditions. The choice of particular prior distributions

that allow one to develop the posterior analysis of autoregressive models with (or without) the

stationarity has also been much discussed in the literature (Phillips, 1991). However, most papers

use uninformative (objective) priors and do not consider stationarity issues. As there is no clear

consensus on these topics in the literature, we do not impose any particular constraints on the

priors of the dependent parameters.

3Parent and LeSage (2010, 2011) use a restriction on δ(= −ρ× φ) allowing space and time to be separable.
4Yu et al. (2008) observed that yt can have some nonstationary components if φ+ρ+δ = 1 but, as underlined

by Parent and LeSage (2011), stationarity does not require that |φ| + |ρ| + |δ| < 1. LeSage et al. (2019) recall
that the dependence parameters φ, ρ and δ associated with stable processes require φ+ ρ+ δ < 1 and, for cases
where ρ− δ > 0, it requires that φ− ρ+ δ > −1. See also Parent and LeSage (2011).
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Extending the Baltagi et al. (2018, 2021) non-spatial ε-contamination papers to the dynamic

space-time model, we assume a Zellner g-prior, for the θ
(
= [φ, ρ, δ, β′]

′)
vector encompassing all

the coefficients of the covariates Z. In other words, we propose a very general two-stage hierarchy

framework:

First stage : y = Zθ +Db+ u, u ∼ N(0,Σ),Σ = τ−1I(T−1)N

Second stage : θ ∼ N (θ0,Λθ) and b ∼ N (b0,Λb) (6)

with p (τ) ∝ τ−1 , Λθ = (τgZ ′Z)
−1

and Λb = (τhD′D)
−1
.

The second stage (also called fixed effects model in the Bayesian literature) updates the distribu-

tion of the parameters. Rather than specifying a Wishart distribution for the variance-covariance

matrices as is customary, Zellner’s g-prior (Λθ = (τgZ ′Z)
−1

for θ or Λb = (τhD′D)
−1

for b) has

been widely adopted because of its computational efficiency in evaluating marginal likelihoods

and because of its simple interpretation as arising from the design matrix of observables in the

sample. Since the calculation of marginal likelihoods using a mixture of g-priors (resp. h-priors)

involves only a one-dimensional integral, this approach provides an attractive computational so-

lution that made the original g-priors popular while insuring robustness to misspecification of g

(resp. h) (see Zellner (1986) and Fernández et al. (2001) to mention a few).5 Since the calculation

of marginal likelihoods using a mixture of g-priors involves only a one-dimensional integral, this

approach provides an attractive computational solution that made the original g-priors popular

while insuring robustness to misspecification of g (see Zellner (1986) and Fernández et al. (2001)

to mention a few).

To guard against misspecifying the distributions of the priors, many suggest considering

classes of priors (θ, b, τ) (see Berger (1985), Baltagi et al. (2018, 2021)). Here, we consider the

ε-contamination class of prior distributions for (θ, b, τ):

Γ = {π (θ, b, τ |g0, h0) = (1− ε)π0 (θ, b, τ |g0, h0) + εq (θ, b, τ |g0, h0)} . (7)

π0 (·) is the base elicited prior, q (·) is the contamination belonging to some suitable class Q of

prior distributions, 0 ≤ ε ≤ 1 is given and reflects the amount of error in π0 (·) . The precision τ

is assumed to have a vague prior, p (τ) ∝ τ−1, 0 < τ <∞, and π0 (θ, b, τ |g0, h0) is the base prior

assumed to be a specific g-prior with θ ∼ N
(
θ0ιK1

, (τg0ΛZ)
−1
)

with ΛZ = Z ′Z

b ∼ N
(
b0ιNK2

, (τh0ΛD)
−1
)

with ΛD = D′D,
(8)

where ιK1 is a (K1 × 1) vector of ones. Furthermore, θ0, b0, g0 and h0 are known scalar hyper-

parameters of the base prior π0 (θ, b, τ |g0, h0). The probability density function (henceforth pdf)

of the base prior π0 (.) is given by:

π0 (θ, b, τ |g0, h0) = p (θ|b, τ, θ0, b0, g0, h0)× p (b|τ, b0, h0)× p (τ) . (9)

5The literature generally recommends using the unit information prior (UIP) to set the g-priors (see section
4.1).
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The possible class of contamination Q is defined as:

Q =

{
q (θ, b, τ |g0, h0) = p (θ|b, τ, θq, bq, gq, hq)× p (b|τ, bq, hq)× p (τ)

with 0 < gq ≤ g0, 0 < hq ≤ h0

}
, (10)

with  θ ∼ N
(
θqιK1

, (τgqΛZ)
−1
)

b ∼ N
(
bqιNK2

, (τhqΛD)
−1
)
,

(11)

where θq, bq, gq and hq are unknown. The restrictions gq ≤ g0 and hq ≤ h0 imply that the base

prior is the best possible so that the precision of the base prior is greater than any prior belonging

to the contamination class. The ε-contamination class of prior distributions for (θ, b, τ) is then

conditional on known g0 and h0.

Following Baltagi et al. (2018, 2021), we use a two-step strategy because it simplifies the

derivation of the predictive densities (or marginal likelihoods):6

1. Let y∗ = (y − Db). Derive the conditional ML-II posterior distribution of θ given the

specific effects b.

2. Let ỹ = (y − Zθ). Derive the conditional ML-II posterior distribution of b given the

coefficients θ.

We condition the likelihood on the first period observation of y1 and consider the latter as

exogenous and known. As stressed above, and in line with most of the literature, we do not

impose stationarity constraints. Likewise, we adhere to the philosophy of the ε-contamination

class approach and use data-driven priors.

3. The robust dynamic space-time model in the two-stage hierarchy

The marginal likelihoods (or predictive densities) corresponding to the base priors are:

m (y∗|π0, b, g0) =

∞∫
0

∫
RK1

π0 (θ, τ |g0)× p (y∗|Z, b, τ) dθ dτ,

where K1 is the dimension of θ. Further

m (ỹ|π0, θ, h0) =

∞∫
0

∫
RNK2

π0 (b, τ |h0)× p (ỹ|D, θ, τ) db dτ,

where K2 is the dimension of b and

π0 (θ, τ |g0) =
(τg0

2π

)K1
2

τ−1 |ΛZ |1/2 exp
(
−τg0

2
(θ − θ0ιK1

)′ΛZ(θ − θ0ιK1
))
)
,

π0 (b, τ |h0) =

(
τh0

2π

)NK2
2

τ−1 |ΛD|1/2 exp

(
−τh0

2
(b− b0ιNK2)′ΛD(b− b0ιNK2)

)
.

6A one-step estimation of the ML-II posterior distribution is possible but hardly feasible. This is because
the probability density functions of y and that of the base prior π0 (θ, b, τ |g0, h0) need to be combined to get the
predictive density. The resulting expression is highly complex and its integration with respect to (θ, b, τ) is quite
involved.
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Solving these equations is considerably easier than solving the equivalent expression correspond-

ing to a one-step approach.

For the first step of the robust Bayesian estimator (y∗ = y−Db), combining the pdf of y∗ and

the pdf of the base prior allows one to get the predictive density m (y∗|π0, b, g0) corresponding

to the base prior.7 Likewise, we can obtain the predictive density m (y∗|q, b, g0) corresponding

to the contaminated prior for the distribution q (θ, τ |g0, h0) ∈ Q from the class Q of possible

contamination distributions. As the ε-contamination of the prior distributions for (θ, τ) is defined

by π (θ, τ |g0) = (1− ε)π0 (θ, τ |g0)+εq (θ, τ |g0), the corresponding predictive density is given by:

m (y∗|π, b, g0) = (1− ε)m (y∗|π0, b, g0) + εm (y∗|q, b, g0) .

Let π∗0 (θ, τ |g0) denote the posterior density of (θ, τ) based upon the prior π0 (θ, τ |g0). Let

q∗ (θ, τ |g0) denote the posterior density of (θ, τ) based upon the prior q (θ, τ |g0). Then the ML-II

posterior density of (θ, τ) is given by

π̂∗ (θ, τ |g0) =
p (y∗|X, b, τ) π̂ (θ, τ | g0)

∞∫
0

∫
RK1

p (y∗|X, b, τ) π̂ (θ, τ |g0) dθ dτ

= λ̂θ

(
p (y∗|X, b, τ)π0 (θ, τ |g0)

m (y∗ | π0, b, g0)

)
+
(

1− λ̂θ
)(p (y∗|X, b, τ) q̂ (θ, τ |g0)

m (y∗|q̂, b, g0)

)
,

with

λ̂θ,g0 =

[
1 +

εm (y∗|q̂, b, g0)

(1− ε)m (y∗|π0, b, g0)

]
.

and m (y∗|q̂, b, g0) = supq∈Qm (y∗|q, b, g0). Integration of π̂∗ (θ, τ |g0) with respect to τ leads to

the marginal ML-II posterior density of θ :

π̂∗ (θ|g0) =

∞∫
0

π̂∗ (θ, τ |g0) dτ = λ̂θ,g0

∞∫
0

π∗0 (θ, τ |g0) dτ +
(

1− λ̂θ,g0
) ∞∫

0

q∗ (θ, τ |g0) dτ

= λ̂θ,g0π
∗
0 (θ|g0) +

(
1− λ̂θ,g0

)
q̂∗ (θ|g0) , (12)

where π∗0 (θ|g0) is the pdf of a multivariate t-distribution where the mean vector θ∗(b|g0) is the

Bayes estimate of θ for the prior distribution π0 (θ, τ). q̂∗ (θ|g0) is the pdf of a multivariate

t-distribution where the mean vector θ̂EB (b|g0) is the empirical Bayes estimator of θ for the

contaminated prior distribution q (θ, τ) (see section B of the supplementary material). The

mean of the ML-II posterior density of θ is then:

θ̂ML−II = λ̂θ,g0E [π∗0 (θ|g0)] +
(

1− λ̂θ,g0
)
E [q̂∗ (θ|g0)] (13)

= λ̂θ,g0θ∗(b|g0) +
(

1− λ̂θ,g0
)
θ̂EB (b|g0) .

The ML-II posterior density of θ, given b and g0 is a shrinkage estimator. It is a weighted average

of the Bayes estimator θ∗(b|g0) under the base prior g0 and the data-dependent empirical Bayes

estimator θ̂EB (b|g0). If the base prior is consistent with the data, the weight λ̂θ,g0 → 1 and the

ML-II posterior density of θ gives more weight to the posterior π∗0 (θ|g0) derived from the elicited

7More information is given in section B of the supplementary material and in Baltagi et al. (2018, 2021).
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prior. In this case θ̂ML−II is close to the Bayes estimator θ∗(b|g0). Conversely, if the base prior

is not consistent with the data, the weight λ̂θ,g0 → 0 and the ML-II posterior density of θ is then

close to the posterior q̂∗ (θ|g0) and to the empirical Bayes estimator θ̂EB (b|g0). The ability of

the ε-contamination model to extract more information from the data is what makes it superior

to the classical Bayes estimator based on a single base prior.

The second step of the robust Bayesian estimator focuses on ỹ = y − Zθ. Moving along the

lines of the first step, the ML-II posterior density of b is given by:

π̂∗ (b|h0) = λ̂b,h0π
∗
0 (b|h0) +

(
1− λ̂b,h0

)
q̂∗ (b|h0) , (14)

where λ̂b,h0 is an estimated weight, π∗0 (b|h0) is the pdf of a multivariate t-distribution where the

mean vector b∗(θ|h0) is the Bayes estimate of b for the prior distribution π0 (b, τ |h0), q∗ (b|h0)

is the pdf of a multivariate t-distribution where the mean vector b̂EB (θ|h0) is the empirical

Bayes estimator of b for the contaminated prior distribution q (b, τ |h0) (see section B of the

supplementary material). The mean of the ML-II posterior density of b is hence given by:

b̂ML−II = λ̂b,h0b∗(θ|h0) +
(

1− λ̂b,h0

)
b̂EB (θ|h0) . (15)

Many have raised concern about the unbiasedness of the posterior variance-covariance matrices

of θ̂ML−II and b̂ML−II . Following Berger (1985), Baltagi et al. (2018) derived the analytical

ML-II posterior variance-covariance matrices of θ̂ML−II and b̂ML−II . Unfortunately, both are

biased towards zero as λ̂θ,g0 and λ̂b,h0
→ 0 and converge to the empirical variance which is

known to underestimate the true variance (see e.g. Berger and Berliner (1986); Gilks et al.

(1997); Robert (2007)). Consequently, to approximate the true ML-II variances, Baltagi et al.

(2018, 2021) proposed two different strategies, each with different desirable properties: 1) MCMC

with multivariate t-distributions or 2) block resampling bootstrap. In addition, they proposed

a mixture of multivariate skewed (or non-skewed) t-distributions to decrease the computational

time (see section B of the supplementary material). In what follows, we will use block resampling

bootstrap and mixtures of multivariate t-distributions.

4. A Monte Carlo simulation study

4.1. The DGP of the Monte Carlo simulation study

We consider a number of distinct statistical worlds. These include the random effects (RE)

world, the Chamberlain (1982)-type fixed effects (FE) world and the Hausman and Taylor (1981)

(HT) world. We extend the DGPs used in Baltagi et al. (2018, 2021) to the dynamic space-time

case. For the dynamic space-time panel data model with common trends or with common

correlated effects, we draw inspiration from the DGP of Chudik and Pesaran (2015a,b) and

Baltagi et al. (2021).

Consider the dynamic space-time panel data model:

yti = φyt−1,i + ρy∗ti + δy∗t−1,i + x1,tiβ1 + x2,tiβ2 + V1,iη1 + V2,iη2 + µi + uti, (16)

for i = 1, ..., N , t = 2, ..., T, with
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x1,ti = 0.7x1,t−1,i + ζi + κti
uti ∼ N

(
0, τ−1

)
, (ζi,κti) ∼ U(−6, 6).

where y∗ti =
∑N
j=1 wijytj and y∗t−1,i =

∑N
j=1 wijyt−1,j .

1. For a dynamic space-time random effects (RE) world, we assume that:

η1 = η2 = 0

x2,ti = 0.7x2,t−1,i + κi + ϑti , (κi, ϑti) ∼ U(−6, 6)

µi ∼ N
(
0, σ2

µ

)
, σ2

µ = 4τ−1.

Furthermore, x1,ti and x2,ti are assumed to be exogenous in that they are not correlated

with µi and uti.

2. For a dynamic space-time Chamberlain-type fixed effects (FE) world, we assume that:

η1 = η2 = 0;

x2,ti = δ2,i + ω2,ti , δ2,i ∼ N(mδ2 , σ
2
δ2), ω2,ti ∼ N(mω2 , σ

2
ω2

);

mδ2 = mω2
= 1, σ2

δ2 = 8, σ2
ω2

= 2;

µi = x2,1iπ1 + x2,2iπ2 + ...+ x2,T iπT + νi, νi ∼ N(0, σ2
ν);

σ2
ν = 1, πt = (0.8)T−t for t = 1, ..., T.

x1,ti is assumed to be exogenous but x2,ti is correlated with µi and we assume an exponential

growth for the correlation coefficient πt.

3. For a dynamic space-time Hausman-Taylor (HT) world, we assume that:

η1 = η2 = 1;

x2,ti = 0.7x2,t−1,i + µi + ϑti , ϑti ∼ U(−6, 6);

V1,i = 1, ∀i;

V2,i = µi + ζi + θi + ξi , (θi, ξi) ∼ U(−6, 6);

µi ∼ N
(
0, σ2

µ

)
and σ2

µ = 4τ−1.

x1,ti and V1,i are assumed to be exogenous while x2,ti and V2,i are endogenous because

they are correlated with µi but not with the uti.

4. For a dynamic space-time homogeneous panel data world with common trends, (see Chudik

and Pesaran (2015a,b)), we assume that

yti = φyt−1,i + ρy∗t,i + δy∗t−1,i + xtiβ1 + xt−1,iβ2 + f ′tγi + uti, (17)

for i = 1, ..., N , t = 2, ..., T,

with

xti = f ′tγxi + ωxti

ωxti = %xiωxt−1,i
+ ζxti

γil = γl + ηi,γl , for l = 1, ...,m

γxil = γxl + ηi,γxl , for l = 1, ...,m
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where

ζxti ∼ U(−3, 3) , ηi,γl ∼ N(0, σ2
γl

) , ηi,γxl ∼ N(0, σ2
γxl

)

σ2
γl

= σ2
γxl

= 0.22 , γl =
√
l × cγ , γxl =

√
l × cx,l

cγ = (1/m)− σ2
γl

, cx,l = 2
m(m+1) −

2σ2
γxl

(m+1) , and uti ∼ N
(
0, τ−1

)
.

ft and γi are (m × 1) vectors. We consider m = 2 deterministic known common trends:

one linear trend ft,1 = t/T and one polynomial trend: ft,2 = t/T + 1.4(t/T )2− 3(t/T )3 for

t = 2, ..., T .

5. For a dynamic space-time homogeneous panel data world with correlated common effects

(see Chudik and Pesaran (2015a,b), Yang (2021)), we assume that the m common trends

ft in the model (17), are replaced with unobserved common factors:

ftl = ρflft−1,l + ξftl , ξftl ∼ U(−0.1, 0.1) , l = 1, ...,m

We suppose that the common factors are independent stationary AR(1) processes with

ρfl = 0.5 for l = 1, ...,m.

6. For a dynamic space-time heterogeneous panel data world with correlated common effects

(see Chudik and Pesaran (2015a,b)), we assume that, in the model (17), φ (resp. ρ, δ

and β1) is replaced by individual coefficients φi ∼ U(0.6, 0.9) (resp. ρi ∼ U(0.65, 0.95),

δi = −φiρi and β1i ∼ U(0.5, 1)) for i = 1, ..., N and keep the m unobserved common factors

as defined as previously.

For each set-up, we vary the size of the sample and the duration of the panel. We choose

several (N,T ) pairs with N = 63, 120 and T = 10, 20 for cases 1 to 3 and N = (63, 120) and

T = (30, 50) for cases 4 to 6. Following Bivand et al. (2008), we use the census tract data set

for Central New York State counties featured in Waller and Gotway (2004). More precisely, we

work on two subsets of the map consisting of the N = 63 census tracts within Syracuse City and

the N = 120 census tracts within Syracuse City and its neighborhood. We use several weighting

matrices WN (= {wij}) which essentially differ in their degree of sparseness. First, we create

inverse distance weighting matrices with wij = 1/dist(i, j) where dist(i, j) is the distance (in

km) between two census tracts i and j. The matrix WN is full save for its diagonal elements

which are set to zero. Second, we create weighting matrices from the census tract rook-style

and queen-style contiguities, by analogy with movements on a chessboard. Lastly, we create

k-nearest neighbors weighting matrices with the k = 4 or 10 individuals (see Figures 1 to 3 in

section D in the supplementary material). All the weighting matrices are row normalized.

The autoregressive and spatial coefficients take several values (0.75, 0.3) for φ and (0.8, 0.4) for

ρ while the spatio-temporal diffusion parameter is fixed (δ = −φρ) in most cases and β1 = β2 = 1.

We set the initial values of yti, x1,1,ti, x1,2,ti and x2,ti, xti, ... to zero. Next, we generate all the

x1,ti, x2,ti, xti, yti, uti, ζti, ςti, ω2,ti, .... over T + T0 time periods and we drop the first T0(= 50)

observations to reduce the dependence on the initial values.

The robust Bayesian estimators for the two-stage hierarchy are estimated with ε = 0.5,

though we also investigate their robustness to various values of ε.8 We must set the hy-

8ε = 0.5 is an arbitrary value. We implicitly assume that the amount of error in the base elicited prior is
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perparameters values θ0, b0, g0, h0, τ for the initial distributions of θ ∼ N
(
θ0ιK1

, (τg0ΛZ)
−1
)

and b ∼ N
(
b0ιNK2

, (τh0ΛD)
−1
)

where θ = [φ, ρ, δ, β1, β2, η1, η2]
′

for the first three cases and

θ = [φ, ρ, δ, β1, β2]
′

for the last three cases. While we can choose arbitrary values for θ0, b0 and τ ,

the literature generally recommends using the unit information prior (UIP) to set the g-priors.9

In the normal regression case, and following Kass and Wasserman (1995), the UIP corresponds

to g0 = h0 = 1/((T − 1)N), leading to Bayes factors that behave like the Bayesian Information

Criterion (BIC).

For the 2S robust estimators, we use BR = 20 samples in the block resampling bootstrap.

For each experiment, we run R = 1, 000 replications and we compute the means, the standard

errors and the root mean squared errors (RMSEs) of the coefficients, the variances of the specific

effects and the residual variances. To save on space, we only include tables and comments for the

random effects world, the Chamberlain-type fixed effects world and the homogeneous panel data

world with common trends. Results for other statistical worlds (Hausman-Taylor, homogeneous

(resp. heterogeneous) panel data world with correlated common effects) are reported in the

supplementary material.

4.2. Simulation results

4.2.1. The dynamic space-time random effects world

Rewrite the general dynamic model (6) as follows:

y =Zθ +Db+ u = Zθ + Zµµ+ u

with Z ′ti =
[
yt−1,i, y

∗
ti, y

∗
t−1,i, x1,ti, x2,ti

]
, θ′ = [φ, ρ, δ, β1, β2] ,

where u ∼ N(0,Σ), Σ = τ−1I(T−1)N , Zµ = ι(T−1) ⊗ IN is ((T − 1)N ×N), ⊗ is the Kronecker

product, ι(T−1) is a ((T − 1)× 1) vector of ones and µ(≡ b) is an (N × 1) vector of idiosyncratic

parameters. When D ≡ Zµ, the random effects, µ ∼ N
(
0, σ2

µIN
)
, are associated with the error

term ν = Zµµ+ u with Var (ν) = σ2
µ

(
J(T−1) ⊗ IN

)
+ σ2

uI(T−1)N , where J(T−1) = ι(T−1)ι
′
(T−1).

This model can also be estimated using MCMC Gibbs sampling and quasi-maximum likeli-

hood (QML) (see Yu et al. (2008), Kripfganz (2016), Bun et al. (2017), Hsiao and Zhou (2018),

Moral-Benito et al. (2019)). In what follows, we compare our Bayesian two-stage two-step esti-

mator (B2S2S) with the latter two estimators.10,11

Table 1 reports the results of fitting the Bayesian two-stage two-step model (B2S2S) along

with those from the QMLE and the MCMC Gibbs sampling, each in a separate panel respectively

for (N = 63, T = 10) and (N = 120, T = 20) using a row normalized inverse distance weighting

matrix, WN . The true parameter values appear in the first row of the Table. The last column

reports the computation time in seconds.12 Note that the computation time increases signifi-

cantly as we move from a small sample to a larger one. The B2S2S estimator with mixtures of

50%. In other words, ε = 0.5 means that we elicit the π0 prior but feel we could be as much as 50% off (in terms
of implied probability sets).

9We chose: θ0 = 0, b0 = 0 and τ = 1.
10See section C in the supplementary material. For the MCMC Gibbs sampling, we explicitly introduce uniform

distributions for φ, ρ and δ. We use 1, 000 draws and a warmup of 500 burn-in draws.
11We use our own R codes for the Bayesian two-stage two-step model (B2S2S) and the MCMC Gibbs sampling

and the “xtdpdqml” Stata command for the QML estimator. We use the same DGP set under R and Stata
environments to compare the three methods.

12The simulations were conducted using R version 3.3.2 on a MacBook Pro, 2.8 GHz core i7 with 16Go 1600
MGz DDR3 ram.
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t-distributions for the standard errors (hereafter se mixt in the Tables) is the fastest, followed by

the B2S2S estimator with block resampling bootstrap for the standard errors (hereafter se boot

in the Tables), whereas the MCMC Gibbs sampling needs considerably more computation time

to get very similar estimates.13

The first noteworthy feature of the Table is that all the estimators yield parameter estimates,

standard errors and RMSEs that are very close.14 The B2S2S estimator yields a slightly under-

estimated σ2
µ whereas the MCMC Gibbs sampling yields a very precise estimate. On the other

hand, the latter is obtained at a huge computational cost. The numerical standard errors (“nse”)

and the convergence diagnostic (“cd”) confirm the good mixing of the MCMC draws.15 We first

estimate the Bayesian two-stage two-step model (B2S2S) with block resampling bootstrap.16 It

is worth mentioning that only the estimates of the variance of the specific effects are biased

when using the B2S2S and QMLE estimators. The biases are nevertheless relatively small (resp.

−3.25% and −2.75% for B2S2S and QMLE) and decrease as N and T increase (resp. −1.25%

and −0.25% for B2S2S and QMLE). The estimated values of the other parameters are virtually

unbiased (1% or less). Table 1 confirms that the base prior is not consistent with the data since

λ̂θ,g0 is close to zero. The ML-II posterior density of θ is close to the posterior q̂∗ (θ|g0) and to

the empirical Bayes estimator θ̂EB (b|g0). Conversely, λ̂µ is close to 0.5 so the Bayes estimator

b∗(θ|h0) under the base prior h0 and the empirical Bayes estimator b̂EB (θ|h0) each contributes

similarly to the random effects bi(≡ µi). Below the table we stress that the stationarity conditions

of the B2S2S estimator are satisfied. The QLME gives similar results but is computationally

considerably more demanding. It is important to note that the standard deviations of φ, β1 and

β2 when using the B2S2S estimator with mixtures of t-distributions (B2S2S mixt) are slightly

underestimated relative to those of B2S2S boot, QMLE or the full Bayesian estimator. There is

thus a trade-off between slightly biased standard deviations and exceedingly large computation

time.

We next simulate the model when the spatial dependence parameter (ρ) is decreased from

0.8 to 0.4. To save space, the results are reported in Table G.1 of the supplementary material.

As above, we consider the row normalized inverse distance weighting matrix WN . In a nut shell,

the B2S2S and QMLE estimators do just as well as the MCMC when N = 63 and T = 10 but in

considerably less computation time (we do not run MCMC for N = 120 and T = 20 due to the

excessive computation time). Once again, our B2S2S estimator satisfies the implicit stationarity

conditions of the dynamic space-time structure. We also simulate the model by setting φ to 0.3

instead 0.75 while maintaining ρ at 0.8 (see Table G.2 in the supplementary material). We draw

the same conclusions as for Table G.1, namely that the B2S2S and QMLE estimators perform

13For the sake of brevity, we will henceforth write B2S2S mixt and B2S2S boot when referring to the B2S2S
estimators with mixtures of t-distributions and with block resampling bootstrap, respectively.

14Strictly speaking, we should mention “posterior means” and “posterior standard errors” whenever we refer
to Bayesian estimates and “coefficients” and “standard errors” when discussing frequentist ones. For the sake of
brevity, we will use “coefficients” and “standard errors” in both cases.

15The “nse”, often referred to as the Monte-Carlo error, is equal to the difference between the mean of the
sampled values and the true posterior mean. As a rule of thumb, as many simulations as necessary should be
conducted so as to ensure that the Monte Carlo error of each parameter of interest is less than approximately
10% of the sample standard error. As shown in the Table, the estimated nse easily satisfy this criterion. The
“cd” compares means calculated from the first 10% and last 40% draws of the Markov chain. Under the null
hypothesis of no difference between these means, cd ∼ N(0, 1) and indicates that a sufficiently large number of
draws have been taken. See Koop (2003); Koop et al. (2007).

16Recall that we use only BR = 20 individual block bootstrap samples. Fortunately, the results are very
robust to the value of BR. For instance, increasing BR from 20 to 200 in the random effects world increases the
computation time tenfold but yields practically the same results.
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as well as the MCMC when N = 63 and T = 10 and that their estimates are very close to one

another for N = 120 and T = 20, although the B2S2S estimator is considerably faster. Finally,

we report the results when setting φ = 0.3 and ρ = 0.4 in Table G.3 of the supplementary

material. The same conclusions hold as those for Tables G.1 and G.2.

Next, we investigate the properties of our estimators when the autoregressive time dependence

parameter is close to the unit root, i.e. φ = 0.98 for N = 63 and T = 10. The spatial

dependence parameter takes two values: ρ = (0.8; 0.4) (See Table G.4 of the supplementary

material). Interestingly, in such an environment the stationarity conditions are still satisfied

as confirmed by the 95% HPDI. It does not therefore seem necessary to impose a stationarity

constraint on the prior distribution of φ (nor on ρ and consequently on δ). Three features of

the simulation results are worth mentioning. First, the B2S2S and MCMC estimators yield a

bias of similar magnitude but in opposite direction for σ2
µ (±5.4%). On the other hand, when

the spatial dependence parameter is reduced to ρ = 0.4, the bias of the MCMC estimator is

lower (−1.5%). Conversely, the bias of the QMLE is very large (−34.6%). Second, the Stata

procedure “xtdpdqml” which corresponds to the QML estimator yields an unrealistic estimate

of the variance σ2
u of the remainder disturbance. Third, the other parameters of the model (φ,

ρ, δ and β) are not biased in any significant way, regardless of the estimation method.

We next investigate the sensitivity of our results to two different types of weighting matrices.

All the simulations are conducted by setting φ = 0.75 and ρ = 0.8 for N = 63 and T = 10.

First, we use the census tracts of the City of Syracuse to compute rook-style and queen-style

contiguity weighting matrices. The non sparsity rates of both matrices are smaller than that of

the inverse distance weighting matrix (see Figures 1 and 2 in section D in the supplementary

material).17 Once again, the B2S2S and QMLE estimators perform as well as the MCMC but

are both considerably faster (See Table G.5). Second, we compute the 4-nearest and 10-nearest

neighbors weighting matrices using the same census tracks. The non-sparsity rates of these

weighting matrices are also smaller than that of the inverse distance weighting matrices (see

Figures 1 and 3 in section D in the supplementary material).18 We still conclude that the B2S2S

and QMLE estimators do as well as the MCMC but both exhibit more reasonable computation

times (See table G.6).

As a last exercise, we study the behavior of the estimators in the context of an explosive

process. We thus set φ = 1.05 as in Tao and Yu (2020).19. Since ρ = 0.8 and δ = −φρ, we

are clearly outside the stationarity conditions.20 As reported in Table G.7 of the supplementary

material, the B2S2S and MCMC Gibbs sampling estimators give good results although the

variance of the specific effects, σ2
µ, of the B2S2S is once again slightly downward biased. The

17For the N = 63 census tract rook-style and queen-style contiguities within Syracuse city, the non sparsity
rates are respectively 8.72% and 7.76% while that of the inverse distance weighting matrix is 98.41%.

18The with 4-nearest and 10-nearest neighbors weighting matrices have non-sparsity rates of 6.35% and 15.87%,
respectively.

19In a time series: xt = φxt−1 + ut, t = 1, ..., T , xt is said to be local-to-unit-root from the explosive side
(LTUE) if φ = 1 + 1/T . xt is said to be mildly explosive (ME) if φ = 1 + (Tα)/T , with α = 0.1 or 0.3 and xt
is said to be explosive (EX) if φ > 1. When T is large, φLTUE < φME < φEX which is not necessarily the case
when T is small (see for instance Phillips, 1987; Phillips and Magdalinos, 2007; Tao and Yu, 2020)

20As φ = 1.05, ρ = 0.8, δ = −0.84, $min = −0.0963 and $max = 1 where $min and $max are the minimum
and maximum eigenvalues of the spatial weights matrix WN , we cannot respect one of the two stationarity
conditions (4) in footnote 4:{

φ+ (ρ+ δ)$min < 1 if ρ+ δ < 0 → 1.0538 ≮ 1,
φ− (ρ− δ)$max > −1 if ρ− δ ≥ 0 → −0.59 > −1.
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narrow 95% HPDI of φ ([1.0499; 1.0502]) confirms the presence of an explosive root, rejecting the

hypothesis of a unit root or a stationary process. While the QMLE also yields similar results for

φ, ρ, δ, β1 and β2, the estimates of σ2
u and σ2

µ are not only strongly biased but highly unlikely.

In a RE world, one can legitimately argue that the B2S2S yields as good results as the

MCMC Gibbs sampling, irrespective of the autoregressive time dependence parameter, φ, the

spatial dependence parameter, ρ, and the spatio-temporal diffusion parameter, δ, and whether

or not the stationarity conditions are satisfied. Conversely, the QMLE yields similar results to

those of the B2S2S and MCMC Gibbs sampling if we are not too close to (or do not exceed) the

stationarity conditions. In the majority of cases, the B2S2S and QMLE are similar to MCMC

Gibbs sampling but are both undoubtedly preferable from a computational point of view.21 Given

the above results, and for the sake of brevity, the other statistical worlds will be investigated

through the B2S2S and QMLE estimators only using a row-normalized inverse distance weighting

matrix.

4.2.2. The dynamic space-time Chamberlain-type fixed effects world

For the Chamberlain (1982)-type specification, the individual effects (Dtb ≡ µ) are given by

µ = XΠ+ν, where X is a (N × (T − 1)K1) matrix with Xi = (X ′i2, ..., X
′
iT ) and Π = (π′2, ..., π

′
T )′

is a ((T − 1)K1 × 1) vector. Here πt is a (K1 × 1) vector of parameters to be estimated. We

compare the QML estimator to our B2S2S estimator. These are based on the transformed model:

yti = φyt−1,i + ρy∗ti + δy∗t−1,i + x1,tiβ1 + x2,tiβ2 +
∑T
t=2 x2,tiπt + νi + uti or y = Z∗θ∗ + Db + u

where Z∗ =
[
y−1, y

∗, y∗−1, x1, x2, x2

]
, θ∗

′
= (φ, ρ, δ, β1, β2,Π)

′
, D = ιT ⊗ IN and b = ν.

Table 2 shows that once again the results of the B2S2S are very close to — or even better

than — those of the QML estimator.22 Our B2S2S estimator fits the variance parameter of the

specific effects, σ2
µ, better than the QML estimator does. Note that the computation times of

the QMLE are 46 (resp. 3) times greater than those of the B2S2S with the mixture approach

(resp. with bootstrap). Tables G.8 and G.9 in the supplementary material report the estimates

of the πt coefficients. Both estimators yield estimates that are close to the true values.

4.2.3. The dynamic space-time homogeneous panel data world with common trends

The dynamic homogeneous panel data world with common trends is defined as:

yti = φyt−1,i + ρy∗ti + δy∗t−1,i + xtiβ1 + xt−1,iβ2 + f ′tγi + uti

Since the m common trends ft are known, we can rewrite the model as follows:

y =Zθ +Db+ u = Zθ + FΓ + u

with Z ′ti =
[
yt−1,i, y

∗
ti, y

∗
t−1,i, X

′
ti

]
, θ′ = [φ, ρ, δ, β′]

′
and X ′ti = [xti, xt−1,i] ,

21We only used 1, 000 draws and 500 burn-in draws for each replication, which is small for MCMC. Despite
this, 1, 000 replications with N = 63, T = 10 (resp. N = 120, T = 20) require more than one hour of CPU time
(resp. almost 5 hours). Had we used 10, 000 draws and 1, 000 burn-in draws, it would have taken 8 (resp. 34)
hours for N = 63, T = 10 (resp. N = 120, T = 20). The computation times of B2S2S and QMLE are considerably
shorter. For instance, in Table 1 the respective computation times are 3min and 7min for N = 63, T = 10 and
12 min and 20 min for N = 120, T = 20. When using mixtures of t-distributions, the B2S2S requires as little as
15 sec for N = 63, T = 10 and 52 sec for N = 120, T = 20.

22We do not provide simulations for other combinations of φ, ρ and δ for the sake of brevity.
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where u ∼ N(0,Σ), Σ = τ−1IN . The ((T − 1)N × Nm) matrix F of the m common trends is

given by

F =
[
IN ⊗ f ′t

]
t=2,··· ,T

=

 IN ⊗ f ′2
. . .

IN ⊗ f ′T

 with f ′t = (ft1, ft2, · · · , ftm)

and Γ is the (Nm× 1) individual varying coefficients vector:

Γ = vec


γ11 γ21 . . . γN1

γ12 γ22 . . . γN2

. . . . . . . . . . . .

γ1m γ2m . . . γNm


The primal form of this model cannot be estimated as is using the dynamic common correlated

effects pooled estimator (CCEP) (see Pesaran (2006) and Chudik and Pesaran (2015a,b)). The

introduction of spatial terms may bias the CCEP estimator. Bailey et al. (2016) have proposed a

two-stage approach to estimate dynamic space-time models with strong and weak cross-sectional

dependence but do not consider explanatory variables (e.g., yti = φyt−1,i + ρy∗ti + δy∗t−1,i +

f ′tγi + uti). More recently, Yang (2021) proposed a two-stage least squares (2SLS) and a GMM

estimators for a spatial autoregressive model with common factors (e.g., yti = ρy∗ti + xtiβ +

f ′tγi + uti). Yang shows that 2SLS exhibits very small biases and declining RMSEs as N and/or

T increase. The IV matrix of instruments is defined as Qt =
(
xt,WNxt,W

2
Nxt

)
. Interestingly,

the GMM estimator provides similar results but does not clearly dominate the 2SLS estimator.23

We compare our B2S2S estimator with the 2SLS estimator extended to the dynamic space-

time case, but unlike Yang (2021) we do not use only q = 2 in our Monte Carlo simulation study

(e.g. Qt =
(
Xt,WNXt,W

2
NXt

)
, a (N × (q + 1)K1) matrix) since it leads to biased estimates

and large standard errors.24 We must use q = 7 (e.g. Qt =
(
Xt,WNXt,W

2
NXt, · · · ,W 7

NXt

)
) to

get good results. The larger the dimension (N × (q + 1)K1) of the IV matrix Qt, the better the

estimates, especially with respect to the standard errors. We chose samples in which the time

span is large T = 30 or T = 50 with N = 63 or N = 120 census tracts (in the spirit of Chudik

and Pesaran (2015a) and Yang (2021) in their simulations).

Table 3 shows that the results of the B2S2S estimator are close to those of the 2SLS estimator

and both yield very small bias. The computation time is greater with our estimator when using

the bootstrap procedure. On the other hand, when using the mixture approach the computation

time is drastically reduced and our estimator is computationally more efficient as N and T

increase.25 Most importantly, our parameter estimates exhibit much smaller standard errors.

This is a major shortcoming of instrumental variable methods: The loss of efficiency is the price

to pay when using these methods (not to mention the delicate choice of the instrument set).

23With Monte Carlo simulations for a SAR model with i.i.d errors, Yang (2021) shows that the biases (resp.
RMSEs) (×100) of ρ(= 0.4) for 2SLS are smaller (resp. close) to those of GMM: 0.05 (resp. 1.58) for 2SLS and
−0.64 (resp. 1.52) for GMM when N = 50, T = 30 and 0.01 (resp. 0.81) for 2SLS and −0.31 (resp. 0.75) for
GMM when N = 100, T = 50. Similar results are obtained for the coefficient β.

24See section E in the supplementary material for more details on the 2SLS estimator of Yang (2021) extended
to the dynamic space-time case. We use our own R codes for our Bayesian estimator and the 2SLS estimator.

25For N = 63, T = 30 (resp. T = 50), the gain factor is 1.4 (resp. 3.2) and for N = 120, T = 30 (resp.
T = 50), the gain factor is 3.3 (resp. 7.8).
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4.2.4. The dynamic space-time models for the other statistical worlds

For the Hausman-Taylor world, our Bayesian two-stage two-step (B2S2S) estimation method

is compared with the two-stage quasi-maximum likelihood (TSQML) sequential approach pro-

posed by Kripfganz and Schwarz (2019) and adapted to the dynamic space-time framework (see

section G.3 and Tables G.4 and G.5 of the supplementary material). The estimates are very close

to each other. Yet, the B2S2S has a RMSE of the coefficient of the time-invariant variable of

about 50% to that of the TSQML. Interestingly, the standard error of that coefficient is smaller

when using the Bayesian estimator as compared to the two-stage QMLE. We also reached the

same conclusion in non-spatial static and dynamic models (see Baltagi et al. (2018, 2021)). Fi-

nally, the computation times of the two-stage QML sequential approach are huge compared to

those of the B2S2S with mixtures of t-distributions or with bootstrap.

For the homogeneous (resp. heterogeneous) panel data world with correlated common ef-

fects, we compare our B2S2S estimator with the 2SLS estimator of Yang (2021) extended to

the dynamic space-time homogeneous (resp. heterogeneous) case (see sections G.4 and G.5 in

the supplementary material). For the homogeneous case, the results of B2S2S are very close to

those of the 2SLS of the extended Yang’s estimator and lead to better efficiency properties, less

computation time, and absence of bias. Lastly, when we introduce a dynamic space-time het-

erogeneous panel data world with correlated common effects, the results of the B2S2S estimator

are also close to those of the 2SLS estimator but the RMSEs of the B2S2S are generally smaller

than those of 2SLS.

5. Application to crop yields and climate change

Since the seminal work of Wallace (1920), agricultural economists have shown great interest

in estimating crop yield production functions. Most papers have focused on corn as it is the

largest crop in the U.S. in terms of tonnage. Annual yields have usually been regressed against

observed temperatures and precipitations during the growing season.26 As pointed out by Burke

and Emerick (2016), empirical studies have originally either exploited cross-sectional variations to

compare outcomes between warm and cool regions (e.g., Mendelsohn et al. (1994), Schlenker et al.

(2005)), or have used time series to contrast outcomes under warm and cool conditions within

a given area (e.g., Deschênes and Greenstone (2007, 2011), Schlenker and Roberts (2009), Dell

et al. (2012)). More recently, analysts have modeled crop yields within a panel data framework.

In addition, some have estimated the effects of temperature on crop yields using the “degree

day” approach in order to control for spatial (e.g., soil quality) and common time effects. This

specification acknowledges that too high temperatures may harm crop yields while moderate

temperatures are likely beneficial (see e.g., Schlenker and Roberts (2009), Lobell et al. (2013),

Butler and Huybers (2013), Burke and Emerick (2016)).

Given that climate change evolves on a time scale of several decades, the main empirical

challenge is to anticipate the ability of producers to adapt to these long-term trends.27 Depending

26The growing season is generally defined as ranging from April 1st to September 30th in the literature. More
specifically, it starts at sowing and lasts approximately 150 days.

27As pointed out by Keane and Neal (2020), this may involve the use of more heat-tolerant hybrids, improved
water retention in fields, irrigation, adjustment of sowing rates, etc. This adaptation includes all sources of
covariation between heat and heat sensitivity of agricultural yields. It implies the active adaptation of farmers to
temperature for growing techniques, as well as any other factors (not controlled by farmers) that make yields less
sensitive to heat in warmer conditions.
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on the speed of adjustment, the deleterious effects of climate change may be minimal or sizeable.

While the literature provides mixed results on behavioral adjustments (see for instance Lobell

and Burke (2008), Schlenker and Roberts (2009), Butler and Huybers (2013), Porter et al.

(2014), Burke and Emerick (2016)), these are necessarily intrinsic within the spatial and temporal

components of the historical data which maps weather to crop yields.

A standard specification of the “degree-day” approach may be written as

log yti = β1gddti + β2kddti + β3precti + β4prec
2
ti + ci + λt + uti, (18)

where yti is the yield at year t for region (or county) i. The growing degree days, gddj,ti (resp.

the “killing degree days”, kddj,ti), is the total time over the growing season during which the

crops are exposed to temperatures up to a maximum threshold (resp. above the threshold).28

Total yield is customarily written as a quadratic function of cumulative precipitation during

the growing season, precti. The spatial (county) and time effects are represented by ci and λt,

respectively, and aim to capture intercept heterogeneity (such as soil quality) and changes in

total factor productivity that are assumed common across space. The key parameter of interest

is β2 < 0, which captures the extent to which high temperatures reduce crop yields. To take

into account potential adaptation to high temperatures, the specification (18) may be extended

as follows:

log yti = β1gddti + β2,0kddti + β2,1 (log (kddti) kddti − kddti) + β3precti + β4prec
2
ti + ci + λt + uti, (19)

leading to a marginal effect of yields with respect to kdd given by β2,0 + β2,1 log (kddit). This

specification incorporates the strong relationship between the sensitivity of the yields to the

climatology of the kdds (Butler and Huybers (2013), Keane and Neal (2020)). A priori, we

expect a positive effect of gdd (β1 > 0), a concave effect of precipitations (β3 > 0, β4 < 0) and a

positive coefficient β2,1 leading to smaller kdd effects in warmer regions since β2,0 < 0.

Keane and Neal (2020) have also considered adaptation across both regions and time. Since

variations in heat sensitivity can occur across space and over time, they estimate a model with

both spatial and temporal heterogeneity in the slope coefficients:

log yti = β1,tigddti + β2,tikddti + β3,tiprecti + β4,tiprec
2
ti + ci + λt + uti. (20)

They allow the heterogeneous slopes to be correlated with the regressors as they focus on additive

heterogeneity across the county/time dimensions:

βk,ti = βk + βk,i + βk,t , k = 1, ..., 4 (21)

They propose a “mean observation OLS” (MO-OLS) method for models that contain both county

and time fixed effects in the slope coefficients. This novel static panel data method allows to

flexibly estimate the extent of historical adaptation to high temperatures. Their specification

implies that each county’s relative sensitivity to weather is fixed over time.

Our application uses the same data as in Keane and Neal (2020). Our model acknowledges

that crop yields are likely spatially correlated and that time effects may be persistent at the

28The threshold for corn is 29◦C.
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county level. These features argue in favor of a dynamic space-time model defined as

log yti = φ log yt−1,i + ρ
N∑
j=1

wij log ytj + δ
N∑
j=1

wij log yt−1,j

+β1gddti + β2 (log (gddti) gddti − gddti) + β3kddti + β4 (log (kddti) kddti − kddti)

+β5precti + β6prec
2
ti + V ′i η + f ′tγi + uti , i = 1, ..., N , t = 2, ..., T, (22)

where the exogenous variables are as specified above. The row-normalized spatial weights, wij ,

correspond to the inverse of the squared distances (wij = 1/dist2(i, j), in km) between counties

i and j. Likewise, ft is a (m×1) vector of common trends defined as the time means of gdd, kdd

and prec. These trends capture the U.S.-wide trend changes in temperature and precipitation

observed over a long time period. Finally, Vi is (Kv×1) vector of time-invariant dummy variables

which correspond to the 1980-2016 U.S Köppen-Geiger climate classification (see section H in

the supplementary material).

Our specification accounts for potential adaptation to high temperatures via the non-linear

relationship between the climatology of kdds and the sensitivity of the yield to kdd as in Keane

and Neal (2020). In addition, it allows potential adaptation to gdd through the non-linear

relationship between the climatology of gdds and the sensitivity of the yield to gdd.29 According

to our specification, as the number of growing degree days increases, the need to adapt lessens

if β1 > 0 and β2 < 0. On the other hand, if global warming implies more killing degree days

increases, the need to adapt increases significantly if β3 < 0 and β4 > 0.

Specifications (20-21) and (22) are two different approaches to the same problem. The Keane

and Neal (2020) specification is static and non-spatial but with heterogeneous slope coefficients,

the space/time heterogeneity being additive. Moreover, the estimated τ -period-ahead forecasts

of the dependent variable also depend on the future values βk,t+τ . We must therefore make

assumptions about the dynamic time path of the βk,t+τ slope coefficients. In contrast, the

specification we propose is dynamic, spatial and with constant slope coefficients. In addition,

the specification can include time-invariant covariates as well as unobserved or known common

factors. This specification also allows one to discriminate between short-run and long-run effects

and to take into account the spatial correlation of marginal effects via the spatial matrix WN .

5.1. Data

The county-level crop yields, the temperature and the precipitation data are taken from the

supplementary material of Keane and Neal (2020) and cover the period 1950-2015.30 Annual

growing (resp. killing) degree days gddti (resp. kddti) are converted into total hours over

the growing season (see section H in the supplementary material for the description of data).

Likewise, precipitation corresponds to total inches of rain over the growing season. A number of

counties had missing values at different years. These were interpolated using the inverse distance

weighted method. Doing so yields a balanced panel of N = 2, 678 corn-growing counties over

29Indeed, the MO-OLS estimation on the static model

log yti = β1,tigddti + β2,tikddti + β3,tiprecti + β4,tiprec
2
ti + cti + uti , i = 1, ..., N , t = 1, ..., T,

implies a non-linear relation between β̂1,ti and log gddti and between β̂2,ti and log kddti (see Table H.4 and Figures
10 and 11 in the supplementary material).

30Their yield data came from the U.S. Department of Agriculture (USDA) National Agricultural Statistics
Service. Temperatures and precipitations data were drawn from Schlenker and Roberts (2009).
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T = 66 years, i.e. as many as 176, 748 observations. The spatial weight matrix was computed

using the counties spatial polygon coordinates from an ESRI Shapefile downloaded from the US

Census (see section H of the supplementary material).

The spatial patterns of corn yields, growing and killing degree days and precipitations are

displayed in Figure 1.31 The maps exhibit considerable heterogeneity in crop yields ranging from

17 to 159 bushels per acre. They also underline the high productivity of the corn belt and that of

some southwestern and western states (west of the 100th meridian). Growing and killing degree

days show a marked separation between the southern and northern counties around the 35th

parallel. On the other hand, maximum precipitations occur east of the 100th meridian from

south to north.32

5.2. Estimation Results

Table 4 reports the robust parameter estimates of the ε-contamination model in equation

(22) for years 1951 − 2015. Except for some Köppen-Geiger climate classification dummies,

all coefficients are significantly different from zero. The estimated values of the autoregressive

time dependence parameter (φ) (resp. the spatial dependence parameter (ρ) and the spatio-

temporal diffusion parameter (δ)) are 0.606 (resp. 0.912 and −0.537). The impact of the spatial

dependence is stronger than that of the time dependence and the estimated spatio-temporal

diffusion parameter is very close to the product of −ρ × φ = −0.553. The parameter estimates

thus satisfy the stationarity conditions.

The adaptation to the effect of the growing degree days on crop yields is statistically signifi-

cant. As the temperatures of the growing season approach the upper bound of 29◦C from below,

the positive marginal effect gets smaller. Likewise, the adaptation to the effect of the killing

degree days is also statistically significant. Its negative marginal effects also gets smaller as the

temperature rises above 29◦C. Further, the relation between yields and precipitation is concave,

as expected. According to our estimates, only three classes of the Köppen-Geiger climate classi-

fication impact crop yields: Cfa , Cfb and Dwa. All three have a negative coefficient and imply

lower corn yields of between 7% to 10% relative to other classes. Finally, note that the model

exhibits a very good fit (R2 = 0.9985 and σ2
u = 0.0282).33 The right-hand side of Table 4 reports

the 5/95 percentile range of the γi parameters associated with common factors ft which includes

the time means of gdd, kdd and prec. These capture the country-wide trends in temperature

and precipitation observed over our 65-year sample window. The table shows that the counties

are impacted differently by these common trends as there is considerable heterogeneity in the

parameters estimates.

As noted earlier, one of the advantages of the dynamic space-time mixed model is its ability

to estimate short-run (weather) and long-run (climate) effects through impact multipliers, as

well as the τ -period-ahead impact of a (permanent) change in temperature or precipitation at

time t. Specifically, it is readily seen from equation (22) that ∂ log yti/∂Xk,ti represents the

contemporaneous direct effect on county i’s yield growth rate arising from a change in the kth

explanatory variable in county i (see Debarsy et al. (2012), Elhorst (2014)). Furthermore, the

31Enlargements of these maps are reported in Figures 6 to 8 of the supplementary material.
32See the supplementary material for additional maps and descriptive statistics, as well as data on the distri-

bution of the Köppen-Geiger climate classification across counties.
33This estimation is significantly better than that obtained by MO-OLS using the static non-spatial model

which yields an R2 = 0.793 and a residual variance σ2
u = 0.071. See Table H.4 in the supplementary material.

18



cross-partial derivative ∂ log ytj/∂Xk,ti measures the contemporaneous spatial spillover effect on

county j, j 6= i. Finally, ∂ log yt+τ,i/∂Xk,tj gives the own (i = j) and cross (i 6= j) marginal

effects on the yield growth rate in county i at time t+τ of an increase in the kth variable at time

t in a specific county. Written in matrix form, ∂ log yt+τ/∂X
′
k,t is a (N ×N) matrix of dynamic

multipliers. Following LeSage and Pace (2009), the cumulative direct effect (i.e., cumulative

own-county impacts) is computed as the average of the diagonal elements, while the cumulative

indirect effect (i.e., diffusion over space and time) is computed as the average of the row sums of

the off-diagonal elements. The total cumulative effect corresponds to the sum of the cumulative

direct and indirect effects.34,35

Table 5 reports the direct, indirect and total impact multipliers as well as the 30-year-ahead

multipliers for growing and killing degree days and for precipitations. For the growing degree

days, the mean short-run (weather) direct, indirect and total effects on yield growth are 0.008%,

0.05% and 0.06%, respectively. The mean 30-year impacts are estimated at 0.01%, 0.22% and

0.23%, respectively. As shown in the table, the indirect effects (i.e., diffusion over space and time)

clearly dominate. This follows from the fact that the value of the spatial dependence parameter,

ρ, is larger than that of the autoregressive time dependence parameter, φ. Importantly, the

table shows that the short-run direct, indirect and total effects as well as the long-run effect vary

considerably across counties. Thus, an additional growing degree day leads to an increase in

overall corn yields of between 0.19% and 0.29% in the long-run and between 0.05% and 0.08%

in the short-run.

The next panel of the table focuses on the killing degree days. Unfortunately, the short-run

direct, indirect and total effects on corn yields are larger in absolute value than those of growing

degree days. In the long run, an additional kdd today is expected to decrease corn yields by as

much as −3.31%. Once again, the spatio-temporal diffusion effects dominate the time dependence

effect as evidence by a comparison of the direct, indirect and total effects. Thus, an additional

degree-day above 29◦C leads to a decrease in overall corn yields between −6.63% and −0.70%

in the long-run (the climate effect) while the instantaneous effect (the weather effect) is between

−1.95% and −0.16%.

The last panel of the table focuses on precipitations. All short-run effects are positive. The

mean total impact corresponds to an increase of 0.021% in corn yield. In the long-run, the

mean total impact is estimated to be 0.077%. As with gdd and kdd, the spatio-temporal effects

dominate the temporal dependence effect. According to the parameter estimates, an additional

inch of precipitation would lead to a mean increase in corn yield of 0.08% in the long-run and to

an instantaneous mean increase of 0.02%.

To add to the discussion of Table 5, Figure 2 maps the geographic patterns of the long-run

total effects associated with the growing and killing degree days and with precipitations. These

figures are very instructive as they unearth interesting spatial patterns.36 Thus a unit increase in

any of the covariates at time t (i.e., in 2015) leads to specific waves of spatial long-term effects.

Thus, 30 years hence (i.e., in 2045), Figure 2a shows that the marginal impact of an addition

growing degree day will be spread northwesterly with increasing intensity. States that will benefit

most include Washington, Montana, Wyoming, Utah, North and South Dakota, Minnesota and

34We note that it is not possible to separate out the time from space and space-time diffusion effects in this
model except if we constrain δ to be equal to δ = −φρ.

35The derivation of the dynamic multipliers is given in section H.2 in the supplementary material.
36Enlargements of these maps are reported in Figures 12 to 14 of the supplementary material.
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Wisconsin. Corn yields are expected to increase between [0.26%, 0.29%) per year. States located

further south will not gain as much while the southernmost states located east of Texas will

benefit very little.

Surprisingly, the long-term effect of an additional killing degree day spreads into parallel

waves with increasing intensity from southwest to northeast states, as depicted in Figure 2b.

Producers located in North Dakota, Minnesota, Wisconsin, Michigan, Ohio, New York and the

central Appalachians states will be hurt the most. Yields are expected to decrease between

[−6.63%,−4.82%) per year. On the other hand, the least impacted states will be those from

Florida to Texas and Oklahoma.

Lastly, Figure 2c depicts the long-run marginal impacts of an additional unit of precipitation.

The vertical line that stretches more or less from North Dakota to West Texas delineate states

that will benefit most from those who will not benefit much, if at all. To the west, the long-run

total marginal effects are estimated to range between [0.15%, 0.42%) per year. To the east, the

gains in productivity are modest and vary between [0.07%, 0.015%) per year.

A comparison between Figures 1 and 2 helps understand the adaptation mechanisms the are

likely to occur in the face of long term climate changes. Focusing first on the growing degree

days, it is readily apparent that states that have numerous growing hours will benefit little from

an addition gdd and vice versa (Figures 1b and 2a). On the other hand, northwestern states

who benefit most from an additional gdd are also the most vulnerable to an additional killing

degree day. Yet, these states face much fewer kdd during the growing season than the southern

states who also appear to be less vulnerable to an additional kdd. This suggests that the crop

yields in the northwestern states are much more sensitive to climate changes than the other corn

producing states.

6. Conclusion

The dynamic space-time panel data models considered in the paper allow one to account for

feedback from lagged endogenous values, state dependence, spatial spillovers, spatial heterogene-

ity and the interactive effects. The models are based upon an ε-contamination class of priors and

are cast within a two-stage hierarchical approach. This setup can potentially extract more in-

formation from the data than the classical Bayes estimator with a single base prior. In addition,

we show that our approach encompasses a variety of classical or frequentist specifications. The

Type-II maximum likelihood procedure leads to posterior distributions of the slope coefficients

and the individual effects that are convex combinations of the conditional posterior densities

derived from the elicited prior and the ε-contaminated prior. The estimator assigns more weight

to the conditional posterior density derived from the former if the base prior is consistent with

the data and to the latter otherwise. The finite sample performance of the two-stage hierarchical

models is investigated using extensive Monte Carlo experiments. With such a unified toolbox,

our estimators are shown to be at least as good as the alternative classical estimators for the

statistical worlds we consider.

We use our estimator to investigate the ability of corn producers in the United States to

adapt to climate change using the same data as in Keane and Neal (2020). Our robust Bayesian

two-stage two-step approach provides a very good fit to the data. As stressed in the paper, one

of the advantages of this dynamic space-time mixed model is its ability to decompose the short-

run (weather) and long-run (climate) effects into their direct and indirect components through
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impact multipliers and τ -period-ahead impacts of a (permanent) change in the temperature or

precipitation at time t. Our results show that the spatial dependence largely dominates that of

the time dependence, and that the estimated spatio-temporal diffusion parameter is very close

to their product. An additional growing degree day has a statistically significant positive but

decreasing marginal impact on crop yields. The converse holds for an additional killing degree

day. The impact of increased precipitations on crop yield is found to be concave. Finally, the

estimates suggest that corn production in the northwestern states is more sensitive to climate

changes than elsewhere.
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Table 4: Robust estimation using ε-contamination of the impacts of temperatures and precipitations on U.S. corn
yields for the N = 2, 678 counties and the T = 65 years (1951-2015), (NT = 174, 070 observations).

B2S2S coef se mixt γi1 (gdd) γi2 (kdd) γi3 (prec)

φ 0.605913 0.001483 5% -0.000244 -0.002851 -0.000958
ρ 0.912530 0.001730 10% -0.000189 -0.001913 -0.000658
δ -0.537365 0.002188 25% -0.000117 -0.000797 -0.000322
Growing Degree Days mean -0.000057 0.000159 -0.000004
gdd 0.000399 0.000090 75% 0.000006 0.001114 0.000309
log(gdd)gdd− gdd -0.000042 0.000011 90% 0.000073 0.002361 0.000679

Killing Degree Days 95% 0.000126 0.003161 0.000965
kdd -0.002084 0.000078
log(kdd)kdd− kdd 0.000347 0.000015

Precipitation
prect 0.000112 0.000010
prec2 -0.000083 0.000008

Köppen-Geiger climate classification
KG Aw -0.037331 0.040117
KG BSh -0.023433 0.038771
KG BSk -0.020882 0.037975
KG BWh 0.060343 0.040854
KG BWk -0.015472 0.040647
KG Cfa -0.065704 0.038188
KG Cfb -0.069362 0.038221
KG Csa 0.006116 0.038678
KG Csb -0.032743 0.037914
KG Dfa -0.053815 0.038257
KG Dfb -0.049014 0.037479
KG Dfc 0.017874 0.037555
KG Dsb -0.035670 0.037555
KG Dsc 0.019681 0.043040
KG Dwa -0.106968 0.040369
KG Dwb -0.046474 0.039083

σ2
u 0.028204
λθ < 10−6

λµ 0.328997
R2 0.998539

B2S2S: Bayesian two-stage two-step estimation.
se mixt: standard errors of the parameters θ computed with mixture of

t-distributions of θ∗(b|g0) and θ̂EB (b|g0).

f ′t =
(
gdd, kdd, prec

)
.

Stationarity conditions for B2S2S :
φ+ (ρ+ δ)$max = 0.981(< 1) as ρ+ δ = 0.375(≥ 0) and
φ− (ρ− δ)$max = −0.844(> −1) as ρ− δ = 1.449(≥ 0).

KG: Köppen-Geiger climate classification dummies.
Aw Tropical wet and dry climate BSh Warm semi-arid climate
BSk Cold semi-arid climate BWh Warm desert climate
BWk Cold desert climate Cfa Warm oceanic climate/Humid subtropical climate
Cfb Temperate oceanic climate Csa Warm Mediterranean climate
Csb Temperate Mediterranean climate Dfa Warm/Humid continental climate
Dfb Temperate/Humid continental climate Dfc Cool continental climate/Subarctic climate
Dsb Warm/Humid continental climate Dsc Temperate/Humid continental climate
Dwa Cool continental climate/Subarctic climate Dwb Temperate/Mediterranean continental climate
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Table 5: Short-run (weather) and long-run (climate) direct, indirect and total effects of growing and killing degree
days and precipitations on growth rates of corn yields for the N = 2, 678 counties (in percent).

Growing Degree Days τ min 10% 25% mean 75% 90% max

short-run τ = 0 direct 0.0051 0.0072 0.0077 0.0089 0.0095 0.0108 0.0212
(weather) indirect 0.0419 0.0492 0.0522 0.0567 0.0610 0.0649 0.0717

total 0.0524 0.0567 0.0602 0.0656 0.0706 0.0752 0.0821

long-run τ = 30 direct 0.0080 0.0128 0.0140 0.0168 0.0183 0.0217 0.0570
(climate) indirect 0.1690 0.1918 0.2039 0.2202 0.2361 0.2503 0.2726

total 0.1914 0.2059 0.2188 0.2370 0.2544 0.2704 0.2931

Killing Degree Days τ min 10% 25% mean 75% 90% max

short-run τ = 0 direct -0.4706 -0.2102 -0.1635 -0.1250 -0.0733 -0.0563 0.0266
(weather) indirect -1.7299 -1.2820 -1.0459 -0.7936 -0.4886 -0.3999 -0.1457

total -1.9490 -1.4889 -1.2124 -0.9186 -0.5613 -0.4609 -0.1585

long-run τ = 30 direct -1.2686 -0.4055 -0.3097 -0.2377 -0.1368 -0.1024 0.0509
(climate) indirect -6.2462 -4.8440 -4.0157 -3.0725 -1.9397 -1.5779 -0.6740

total -6.6329 -5.2439 -4.3283 -3.3102 -2.0752 -1.6989 -0.7014

Precipitations τ min 10% 25% mean 75% 90% max

short-run τ = 0 direct -0.0097 -0.0004 0.0006 0.0031 0.0043 0.0090 0.0303
(weather) indirect -0.0362 -0.0004 0.0046 0.0186 0.0265 0.0541 0.1027

total -0.0446 -0.0005 0.0052 0.0216 0.0308 0.0637 0.1183

long-run τ = 30 direct -0.0226 -0.0008 0.0012 0.0061 0.0082 0.0169 0.0873
(climate) indirect -0.1202 0.0004 0.0186 0.0710 0.0987 0.2032 0.3942

total -0.1337 0.0002 0.0199 0.0770 0.1065 0.2223 0.4224
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Bushels per acre

[17 to 55)

[55 to 66)

[66 to 76)

[76 to 86)

[86 to 96)

[96 to 109)

[109 to 159]

NA

       County means 1950−2015

      Corn yields

(a)

Total hours

[2,266 to 2,981)

[2,981 to 3,257)

[3,257 to 3,522)

[3,522 to 3,744)

[3,744 to 3,980)

[3,980 to 4,264)

[4,264 to 4,811]

NA

       County means 1950−2015

      Growing degree days

(b)

Total hours

[1 to 15)

[15 to 27)

[27 to 44)

[44 to 64)

[64 to 96)

[96 to 131)

[131 to 630]

NA

       County means 1950−2015

      Killing degree days

(c)

Cumulated inches

[25 to 386)

[386 to 526)

[526 to 588)

[588 to 615)

[615 to 641)

[641 to 674)

[674 to 1,110]

NA

       County means 1950−2015

      Precipitations

(d)

Figure 1: US county means over 1950-2015. (a) Corn yields. (b) Growing degree days. (c) Killing degree days.
(d) Precipitations.
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marginal effect ( 10
−2

 )

[0.191 to 0.213)

[0.213 to 0.226)

[0.226 to 0.236)

[0.236 to 0.248)

[0.248 to 0.265)

[0.265 to 0.293]

NA

    30−years−ahead impact

   Long−run total effects
   of growing degree days on corn yields

(a)

marginal effect ( 10
−2

 )

[−6.630 to −4.818)

[−4.820 to −3.898)

[−3.900 to −3.184)

[−3.180 to −2.519)

[−2.52 to −1.82)

[−1.820 to −0.701]

NA

    30−years−ahead impact

   Long−run total effects
   of killing degree days on corn yields

(b)

marginal effect ( 10
−2

 )

[−0.134 to 0.012)

[0.012 to 0.029)

[0.029 to 0.047)

[0.047 to 0.072)

[0.072 to 0.151)

[0.151 to 0.422]

NA

    30−years−ahead impact

   Long−run total effects
   of precipitation on corn yields

(c)

Figure 2: Long-run total effects on corn yields. (a) Growing degree days. (b) Killing degree days. (c) Precipita-
tions.
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