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Panel Machine Learning with Mixed-Frequency Data: 
Monitoring State-Level Fiscal Variables 

 
Philippe Goulet Coulombe*, Massimiliano Marcellino†, Dalibor Stevanovic‡ 

 
Abstract/Résumé 

 

We study the nowcasting of U.S. state-level fiscal variables using machine learning (ML) models 
and mixed-frequency predictors within a panel framework. Neural networks with continuous and 
categorical embeddings consistently outperform both linear and nonlinear alternatives, 
especially when combined with pooled panel structures. These architectures flexibly capture 
differences across states while benefiting from shared patterns in the panel structure. Forecast 
gains are especially large for volatile variables like expenditures and deficits. Pooling enhances 
forecast stability, and ML models are better suited to handle cross-sectional nonlinearities. 
Results show that predictive improvements are broad-based and that even a few high frequency 
state indicators contribute substantially to forecast accuracy. Our findings highlight the 
complementarity between flexible modeling and cross-sectional pooling, making panel neural 
networks a powerful tool for timely and accurate fiscal monitoring in heterogeneous settings. 
 

------------- 
 
Nous étudions le nowcasting des variables budgétaires des États américains à l’aide de modèles 
d’apprentissage automatique (machine learning) et de prédicteurs à fréquence mixte, dans un 
cadre en panel. Les réseaux de neurones intégrant des variables continues et des identifiants 
catégoriels surpassent systématiquement les alternatives linéaires, en particulier lorsqu’ils sont 
combinés à des structures en panel mutualisé. Ces architectures permettent de capter les 
différences entre les États tout en tirant parti des régularités partagées. Les gains de prévision 
sont particulièrement importants pour les variables volatiles comme les dépenses et les déficits. 
Le regroupement des données améliore la stabilité des prévisions, et les modèles d’apprentissage 
automatique sont mieux adaptés pour traiter les non-linéarités transversales. Les résultats 
montrent que les améliorations prédictives sont généralisées et que même quelques indicateurs 
infranuels spécifiques aux États contribuent de manière significative à la précision des prévisions. 
Nos résultats soulignent la complémentarité entre la modélisation flexible et le regroupement 
transversal, faisant des réseaux de neurones en panel un outil puissant pour un suivi budgétaire 
rapide et précis dans des contextes hétérogènes 
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1 Introduction

Fiscal forecasts play a critical role in macroeconomic policymaking, particularly following the

expansive fiscal measures implemented during the Covid pandemic, which led to a massive

increase in public deficits and debt at both the federal and state levels in the United States and

many other countries. A variety of econometric methods are available for fiscal forecasting,

ranging from univariate and multivariate time series models to semi-structural models incor-

porating accounting identities and fully-fledged structural models; see, for example, Favero

and Marcellino (2005) and the survey in Leal et al. (2008). A common feature across much

of the literature is the focus on national or federal fiscal variables, whereas regional and state

public finances are also critical, especially when key spending and taxation decisions—such as

those related to health and education—are decentralized.

This paper contributes to the fiscal forecasting literature along three main dimensions. First,

we focus on U.S. state-level fiscal variables, such as revenues, expenditures, and deficits (see,

e.g., Ghysels et al. (2022)). Second, we exploit information available at a higher frequency than

the fiscal variables themselves (see, e.g., Onorante et al. (2010), Asimakopoulos et al. (2020)).

Third, and most importantly, we employ novel machine learning (ML) techniques that have

been shown to often outperform standard econometric models, particularly during crises and in

the presence of large information sets (see, e.g., Goulet Coulombe et al. (2021b, 2022); Hauzen-

berger et al. (2024)). While previous work has considered state-level and mixed-frequency data

separately (Ghysels et al., 2022), to the best of our knowledge, integrating them into a unified

ML-based framework that includes nonlinear models and categorical embeddings is new.

More specifically, we forecast state revenues, expenditures and deficits using data from the

Annual Survey of State & Local Government Finances conducted by the U.S. Census Bureau.

For high-frequency predictors, we use a combination of a large number of national indicators

and three state-specific economic indicators as in Ghysels et al. (2022): the growth rates of

unemployment, personal income, and the coincident economic activity index. We conduct a

comprehensive out-of-sample evaluation from 2000 to 2020, forecasting four fiscal variables

across 48 U.S. states. Several classes of models are considered: benchmark unrestricted MIDAS
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regressions, linear ML models (Ridge, Lasso, Sparse-Group Lasso), and nonlinear ML methods

(Random Forests, Boosted Trees, Neural Networks).

Another novelty is the combination of panel and ML methods, resulting in what can be

labeled a panel-ML approach, to assess whether explicitly accounting for the panel structure of

the state-level fiscal data enhances the forecasting performance of ML models. For each model,

we estimate variants using different panel structures, including no pooling, full pooling, and

clustered pooling schemes based on geography or economic similarity. Previously, Khalaf et al.

(2021) and Fosten and Greenaway-McGrevy (2022) introduced mixed-frequency data into a

panel framework, while Babii et al. (2024) addressed the nowcasting problem using penalized

linear regressions in a mixed-frequency context. We extend these approaches by incorporating

nonlinear machine learning techniques.

The results show that combining machine learning with appropriate panel structures yields

substantial predictive gains. Among all approaches, neural networks with continuous and cat-

egorical embeddings consistently perform best. These models are particularly well suited to

capturing fixed effects and unobserved heterogeneity across states. When paired with global

or hierarchical pooling schemes, they dominate both UMIDAS regressions and linear ML mod-

els in terms of forecast accuracy. Their advantage is marked for volatile fiscal variables like

expenditures and deficits, where nonlinearities and cross-sectional interactions matter most.

In particular, results show that the main drivers of predictive performance are model flex-

ibility and the ability to pool information efficiently. Neural networks with embeddings offer

a structured way to incorporate categorical panel information while flexibly modeling nonlin-

ear dynamics. Panel pooling further enhances predictive performance by reducing estimation

variance and exploiting common patterns across states. These two features—nonlinear learn-

ing and pooling—are complementary, not substitutes, and their joint use explains the superior

performance of panel neural networks.

Further detailed analysis provides evidence that the improvements in forecast quality are

broad-based and not concentrated in a few states. The analysis also shows that the limited

number of state-level indicators carries substantial predictive content—particularly for expen-
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ditures—when combined with powerful ML techniques and panel structures. In contrast,

purely individual-level models or those ignoring the panel nature of the data tend to suffer

from instability and misspecification.

Overall, our findings support the use of panel neural networks with embeddings as a pow-

erful tool for monitoring and nowcasting subnational fiscal outcomes. By integrating mixed-

frequency information, flexible nonlinear modeling, and panel pooling, the panel-ML frame-

work offers a scalable and effective approach for fiscal surveillance and short-term policy anal-

ysis at the state level.

The paper is structured as follows. Section 2 presents the data, forecasting models, and

evaluation procedures. Section 3 reports the aggregate forecasting results, including by fiscal

variable and model type, and presents a disaggregated analysis by state. Section 4 analyzes the

sources of predictive performance, quantifying the marginal and joint contributions of model

specification and panel structure. Section 5 concludes.

2 Data and Forecasting Framework

In this section we discuss the data we use in the empirical analysis, how we handle mixed

frequency indicators, the forecasting models, and the set-up of the forecast evaluation exercise.

2.1 Data

State revenue and expenditure data are from the Annual Survey of State & Local Government

Finances conducted by the U.S. Census Bureau. This survey provides detailed information

on revenue and expenditure sources for each state and its local government. Data have been

collected annually since 1957 and cover all 50 state governments in the United States. A census

is conducted every five years (years ending in ’2’ and ’7’), while in other years a subsample of

state and local governments is used. To ensure the reliability and completeness of our analysis,

we focus our attention on data collected from 1958 to 2020. As Ghysels et al. (2022) pointed

out, we chose this time-frame because there are substantial missing observations for state-year
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combinations prior to 1958. Due to limited fiscal data availability during the sample period, we

had to exclude Alaska and Hawaii from our analysis, which leaves comprehensive data for 48

states. To make the data comparable across states and over time, we adjust total revenues and

expenditures based on the population of each state, as documented by the U.S. Census Bureau.

Additionally, we take into account changes in the price level by deflating each variable using the

consumer price index (CPI) developed by the U.S. Bureau of Labor Statistics. Hence, in the end,

our target variables are the revenues and expenditures year-over-year real per capita growths,

the deficit per capita, which is obtained as the difference between revenues and expenditures,

divided by population, as well as the deficit in percentage of GDP.

Regarding the high(er) frequency (HF) indicators used for monitoring the infra-annual evo-

lution of the fiscal variables, we drew inspiration from the work of Ghysels et al. (2022). Our HF

predictors include three state-specific economic indicators available at the quarterly frequency:

the unemployment growth rate, personal income, and the coincident economic activity index.

These indicators provide insights into the economic conditions at the state level. We consider

the ten quarterly US series that have been used in their analysis: 3-Month Treasury Bill: Sec-

ondary Market Rate, 10-Year Treasury Constant Maturity Rate, Effective Federal Funds Rate,

S&P500 Returns, Default Spread (Moodys BAA - AAA yields), Spot Crude Oil Price (WTI),

Industrial Production Index, CPI, Federal Government Budget Surplus and Real GDP.

Moreover, in our analysis, we incorporate many more quarterly US macroeconomic and

financial data, which can provide additional information for intra-annual monitoring the state

fiscal conditions. The data source is the FRED-QD dataset, which can be accessed from the

Federal Reserve of St. Louis’ website. This dataset includes 243 macroeconomic and financial

indicators, providing a comprehensive view of the United States’ economic landscape. Many of

these indicators exhibit high persistence or non-stationarity, so we adopt the approach outlined

by McCracken and Ng (2020) to transform them and ensure stationarity.
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2.2 Handling Mixed-Frequency

Let us define t = 1, ..., T as the low frequency (LF) time unit and tm = 1, ..., Tm as the high

frequency (HF) time unit. The HF time unit is observed m times in the LF time unit. Let us

assume LF is annual and HF is quarterly, hence m = 4. In addition, L indicates the lag operator

at tm frequency, while Lm is the lag operator at t frequency. Let us then define yt as the stationary

low frequency target variable and xt as the high frequency stationary exogenous predictor, so

that x is observable for every period tm, while y is observable only every m periods. Using this

notation, as in Foroni et al. (2019), the models take the following general form:

ytm = ρ(Lm)ytm−hm + δ(L)xtm−hm+w + utm , (1)

where tm = m, 2m, 3m, . . . , Tm, hm is the forecast horizon, w is the number of quarters with

which x is leading y, and the error term utm is white noise with E(utm) = 0 and E(u2
tm
) = σ2

u <

∞. Thus, with m = 4, we have tm = 4, 8, 12 . . .

The model in (1) is known as unrestricted mixed data sampling regression (UMIDAS, see

Foroni et al. (2015)). The restricted version of the UMIDAS in (1), MIDAS, see Ghysels et al.

(2006) , is obtained by imposing a particular structure (e.g. Almon polynomial) on the dis-

tributed lag polynomial δ(L):

ytm = ρ(Lm)ytm−hm + βB(L, θ)xtm−hm+w + utm . (2)

MIDAS is more parsimonious than UMIDAS in terms of the number of parameters, which

often helps forecasting. However, it is nonlinear and must be estimated via nonlinear least

squares (NLS), while ordinary least squares (OLS) suffices for UMIDAS.

The MIDAS model in (2) typically includes a single predictor x, as using multiple indicators

complicates NLS estimation. Forecasts are then averaged to exploit the full information set.

In contrast, UMIDAS can easily accommodate multiple predictors via OLS. But when the fre-

quency mismatch (m) is large, the number of parameters grows quickly. This can be mitigated

by using regularized estimators, as discussed below in the machine learning section.
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2.3 Panel Machine Learning in Mixed-Frequency

To avoid introducing MIDAS-type nonlinearities, especially when dealing with a large num-

ber of predictors, and given the modest frequency mismatch in our application, we follow the

UMIDAS approach for machine learning models.1 Let Xi,tm be an NX-dimensional vector of

high-frequency predictors, where each variable leads y with w periods, and let Zi,tm be the NZ-

dimensional vector collecting lags of the target variable yi,tm and lags of Xi,tm aligned via the

UMIDAS transformation. The model is then:

yi,tm = g(Zi,tm−hm+w; θi) + ui,tm , (3)

where g(·) is a flexible function approximator parameterized by θi—which may vary by unit

depending on the degree of pooling—and ui,tm is an error term. The function g may correspond

to penalized linear regression, tree-based models, or neural networks, as detailed below.

The function g is trained to approximate the conditional mean of yi,tm given the inputs

Zi,tm−hm+w, using regularization and tuning procedures suited to high-dimensional and non-

linear settings.2 In the purely individual case, θi is estimated separately for each i; in pooled

models, it is shared or partially shared across units.

Our application differs from standard macroeconomic forecasting in two key respects. First,

it uses mixed-frequency predictors, requiring specific transformations (via UMIDAS) to align

quarterly and annual information. Second, the target variable is a panel, yi,tm , which varies

across cross-sectional units i = 1, . . . , Ny. Exploiting cross-sectional structure is crucial, as cor-

relations across units may contain predictive content. To this end, we consider several panel

strategies: estimation by unit (no pooling), full pooling, and clustered pooling across econom-

ically meaningful groups. These choices define the degree of heterogeneity allowed in the

1Carriero et al. (2015) adopt the UMIDAS approach for a similar reason, though they use Bayesian priors as a
shrinkage method in the presence of many predictors. Mogliani and Simoni (2021) and Hauzenberger et al. (2024)
develop instead Bayesian MIDAS models for nowcasting with large information sets.

2The predictive importance of flexible nonlinear approximators g has been extensively studied in univariate
forecasting applications with macroeconomic data. In particular, Goulet Coulombe et al. (2021a, 2022) show that
nonlinear models can improve forecasting performance by more than 20% compared to linear benchmarks.
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model’s parameters θi, as detailed next.3

NO PANEL DATA. We can ignore completely the panel structure, so the model remains

yi,tm = g(Z̃i,tm−hm+w; θi) + ui,tm ,

where Z̃i,tm ⊂ Zi,tm includes only state-specific predictors and national indicators. This specifi-

cation is estimated separately for each i, without borrowing information across states.

INDIVIDUAL. We can acknowledge the existence of the panel structure, but assume complete

heterogeneity across units, such that the nowcasting model becomes

yi,tm = g(Zi,tm−hm+w; θi) + ui,tm ,

where now Zi,tm contains covariates from all states. The model is specified and estimated sepa-

rately for each state i.

POOLED. We can embrace the panel structure and assume homogeneity across units, which

results in the pooled version

yi,tm = g(Zi,tm−hm+w; θ) + ui,tm ,

where Zi,tm contains all covariates and fixed effects to account for unobserved state-specific

heterogeneity. The model is specified and estimated by pooling all states.

CLUSTERING. Finally, we can allow for some heterogeneity conditional on a prior clustering

yl
i,tm

= g(Zl
i,tm−hm+w; θl) + ul

i,tm
,

where units i are grouped in the cluster l = 1, . . . L, for a total of L clusters. Given the nature

of our predictive problem, we divided the 48 US states in the following (alternative) clusters

(presented in Figure 14 in the Appendix).

3Theoretical insights on the relative forecasting performance of pooled and heterogeneous panel estimators in
linear settings have been recently explored by Pesaran et al. (2024).
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• REGIONAL: The most obvious regional clustering is to pool states over 4 regions: the

Northeast, the Midwest, the South and the West.

• POLITICAL: The states are pooled together according to their political allegiance through

time which results into 2 clusters: republican and democrat. These clusters are updated

every 4 years after the election.

• GDP: States are grouped according to their GDP per capita: poorest (those belonging to

less than 0.25 percentile), middle (those between 0.25 and 0.75) and rich (>0.75). These

clusters are updated every year.

• HIERARCHICAL: States are grouped using a hierarchical clustering algorithm (Ward Jr,

1963), an unsupervised learning approach. Clustering is performed on the target variables

across states used in the supervised forecasting task. Clusters are updated every year.

2.4 Forecasting Models

We construct forecasting models by means of the direct approach (Marcellino et al., 2006), which

requires to specify a model for each forecast horizon of interest but does not need forecasts

for the exogenous regressors, which is a big plus in our context with possibly hundreds of

regressors, and the use of simulation methods to compute multiple step ahead forecasts for the

nonlinear models, which leads to a major reduction in computing time. For simplicity, we omit

the subscript i but, in every model, the target variable and predictors are observable across the

panel dimension.

2.4.1 Linear Models

BENCHMARK. Like in Ghysels et al. (2022), we consider a random walk model as benchmark,

which, though simple, often forecasts well.

UMIDAS. The UMIDAS models are specified with one high-frequency indicator indicator at

a time, to avoid the curse of dimensionality. As in Ghysels et al. (2022), the set of predic-

tors for UMIDAS models is composed of three state-level variables and ten national indicators
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described above. The final forecast is then obtained by averaging the predictions across all

single-indicator models.

PENALIZED REGRESSIONS. These models extend the linear UMIDAS framework to a high-

dimensional setting. Regularization permits their estimation even when the number of regres-

sors is larger than that of observations. Penalized regressions shrink coefficient estimates to-

ward zero, which can introduce some bias in the estimators and associated forecasts but also

reduce estimation uncertainty, which in turn can improve out-of-sample forecast accuracy. The

general form of the penalized estimator is:

β̂ = arg min
β

Tm

∑
tm=1

(ytm − Ztm−hm+wβ)2 + λ
NZ

∑
j=1

|β j|η, η > 0,

where Ztm−hm+w denotes the available predictors at time tm, λ is a tuning parameter controlling

the degree of regularization, and η determines the type of penalty. We consider two widely

used special cases. Ridge regression (η = 2), imposes an ℓ2 penalty to shrink all coefficients,

and it is typically useful when predictors are highly collinear. Lasso (η = 1), uses an ℓ1 penalty

to perform variable selection, which often leads to setting some coefficients exactly to zero.

To incorporate known structure among predictors—such as lags of the same variable—we

also consider the Sparse-Group Lasso (sg-Lasso), introduced by Simon et al. (2013). This esti-

mator combines ℓ1 and group-level ℓ2 penalties, allowing for both sparsity across variables and

within groups of coefficients. Recent work by Babii et al. (2022, 2023, 2024) adapts this approach

to time series forecasting and demonstrates predictive gains in mixed-frequency contexts. The

sg-Lasso estimator solves:

β̂ = arg min
β

Tm

∑
tm=1

(ytm − Ztm−hm+wβ)2 + λ

[
α

G

∑
g=1

wg|βg|2 + (1 − α)∑ j = 1NZ |β j|
]

,

where βg denotes the subvector of coefficients for group g, and wg is an optional weight (e.g.,

wg =
√
|g|). The mixing parameter α ∈ [0, 1] interpolates between Lasso (α = 0) and Group

Lasso (α = 1), with intermediate values yielding the Sparse-Group Lasso.

As in Babii et al. (2022), we define each group as the full set of high-frequency lags associated
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with a given predictor. The hyperparameters λ and α are selected via cross-validation.

2.4.2 Nonlinear Models

RANDOM FORESTS. This algorithm, besides being capable of handling large datasets, provides

a means of approximating nonlinear functions by combining regression trees. Hence, it allows

to go beyond the linear specification for the conditional mean of the UMIDAS type regressions.

Each regression tree partitions the feature space defined by Ztm−hm+w into distinct regions and

uses the region-specific mean of the target variable ytm as the forecast, i.e. for MRF leaf nodes

ŷtm =
MRF

∑
mRF=1

cmRF I(Ztm−hm+w∈RmRF )
,

where R1, ..., RMRF is a partition of the feature space. Since individual trees tend to overfit,

Breiman (2001) introduced the Random Forest algorithm to stabilize the predictions through

aggregation. The method builds multiple trees on bootstrapped subsamples of the data, and

at each split only a random subset of features is considered. This feature sampling promotes

diversity across trees and reduces correlation between them. The final forecast is obtained by

averaging over the predictions of all trees.

BOOSTED TREES. This algorithm provides an alternative ensemble strategy based on sequen-

tial learning. Instead of averaging predictions, Boosted Trees iteratively add new trees to cor-

rect the errors of the previous ones. At each step n, a tree f (Ztm−hm+w; cn) is trained to fit the

pseudo-residuals e(n)tm
= ytm − ŷ(n)tm

, and the prediction is updated as:

ŷ(n+1)
tm

= ŷ(n)tm
+ ρn f (Ztm−hm+w; cn),

where (ρn, cn) minimizes the squared error loss. The process continues for a pre-specified num-

ber of iterations or until convergence.

In our setup, each tree has a maximum depth of 5. We use a subsample of 75% of the

training data at each iteration, and we tune both the number of trees and the learning rate

ηBT ∈ {0.01, 0.005} via cross-validation. This approach often yields high predictive accuracy by
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efficiently correcting residual patterns in the data.

NEURAL NETWORKS. We employ fully connected feed-forward neural networks with a dual-

input design tailored to panel forecasting. The network processes two types of input features:

(i) continuous variables, which include quarterly and annual macroeconomic predictors, and

(ii) categorical variables identifying the cross-sectional unit. This dual-stream architecture en-

ables the network to capture both temporal dynamics and cross-sectional heterogeneity.

Traditionally, fixed effects in panel models are introduced through dummy variables—i.e.,

one-hot encoding of the categorical unit identifiers. In a neural network, however, this ap-

proach becomes computationally inefficient and uninformative when the number of categories

(e.g., states) is large. Instead, we adopt a more scalable and expressive solution: categorical

embedding. An embedding layer maps each state identifier to a low-dimensional continuous

vector that is jointly optimized with the rest of the network via backpropagation.

This approach offers several key advantages. First, it reduces the dimensionality of the in-

put space by replacing sparse one-hot vectors with dense, compact representations. Second,

and more importantly, it allows the network to learn latent similarities between units. States

with similar fiscal behavior can be mapped to nearby locations in the embedding space, en-

abling parameter sharing and improving generalization. This is richer than static intercepts

and supports nonlinear interactions between state identity and macroeconomic predictors.

Recent empirical evidence from Ma and Zhang (2020) shows that entity embeddings signif-

icantly outperform both one-hot and label encoding in classification tasks, particularly when

the number of categories is large. Not only do embeddings mitigate the curse of dimensional-

ity, but they also yield meaningful geometric relationships among categories, which can help

improve model interpretability and predictive power. This aligns with our findings in the fiscal

forecasting context, where embeddings enable the model to uncover complex fiscal dynamics

across states without manually engineering groupings or hierarchies.

Formally, our neural network architecture unfolds as follows. Let Ztm denote the continu-

ous inputs (e.g., yearly and quarterly predictors defined above) at time tm, and Ctm denote the

categorical input identifying the state. The model proceeds in five steps:
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utm = fcont
(
Ztm ; θcont

)
, (transformation of continuous inputs)

vtm = Embed
(
Ctm ; θemb

)
, (embedding of categorical inputs)

xtm =
[
utm ; vtm

]
, (concatenation of both representations)

htm = fff
(
xtm ; θff

)
, (hidden feed-forward layers)

ŷtm = w⊤
outhtm−hm+w + bout, (final forecast)

Here, fcont(·) is a feed-forward network applied to the continuous inputs, Embed(·) maps

a categorical input to a learned continuous vector, and fff(·) is another feed-forward network

operating on the concatenated representation. The final layer outputs a point forecast for the

fiscal variable of interest.

This hybrid structure, illustrated in Figure 1, allows the model to learn both shared and unit-

specific predictive patterns. We use ReLU activation functions throughout: f (n)(z) = max{0, z}
for each hidden layer n. Training uses mini-batch gradient descent with the Adam optimizer

(learning rate 5 × 10−5) and early stopping after 20 epochs without improvement in validation

loss. The description of the embedding hemisphere is presented in Figure 13 in the Appendix.

2.5 Tuning Hyperparameters

Following Kalfa et al. (2024), we explicitly document the hyperparameter choices and model

configurations across all machine learning methods. This is especially important in a multidi-

mensional setting such as ours, where the size and complexity of the hyperparameter space can

substantially affect performance and interpretability.

We use two lags of the target variable and allow up to 8 lags for quarterly predictors. Table 1

summarizes the main hyperparameters and architectural choices for each model, including

regularization parameters, optimization settings, and early stopping rules where applicable.

To ensure robust and generalizable performance in a panel time-series context, we imple-

ment a cross-validation procedure that respects the temporal ordering of observations—thereby

eliminating look-ahead bias. In addition, we impose a balance constraint across panel units

(e.g., U.S. states), ensuring that each fold contains a comparable number of observations per

12



Figure 1: Neural network architecture

fcont
(
Ztm ;θcont

)
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(
Ctm ;θemb

)

vtm

xtm = [utm;vtm]

htm = fff
(
xtm;θff

)

ŷtm

ŷtm = w⊤
outhtm−hm+w + bout

L =
Tm∑

tm=1
(ŷtm − ytm)2

Ztm

Ctm

Note: The architecture combines a dense network for continuous predictors with an embedding layer for categorical identifiers (states). The
embedding captures unit-specific fixed effects in a low-dimensional representation that is learned jointly with the rest of the model via back-
propagation.

Table 1: Hyperparameters and model specifications

Model Hyperparameters and Settings

Ridge λ ∈ [0.1, 100,000]; geometric spacing
Lasso λ ∈ [10−4, 1]; 500 values; linear spacing; max iterations =

200,000
Sparse-Group
Lasso

λ ∈ [10−4, 1]; 500 values; α ∈ [0, 1] with 10 grid points;
linear spacing

Random Forest Max features ∈ {0.2, 0.35, 0.5}; number of trees = 500
Boosting Trees Subsample = 0.75; learning rate ∈ {0.01, 0.005}; max depth

= 5; number of trees ∈ {100, 250, 500, 750, 1000}
Neural Network 3 hidden layers; 400 neurons per layer; ReLU activations;

Adam optimizer; learning rate = 5e-5; early stopping pa-
tience = 20; max epochs = 100; embedding dimension =
min{3,

√
J}

Note: Summary of key hyperparameters and modeling choices for each machine learning model. Grid values are
selected via cross-validation, respecting the panel and time-series structure of the data.
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unit. This helps avoid overfitting to overrepresented states and encourages more uniform gen-

eralization across the panel. Figure 2 illustrates this cross-validation structure, where training

and testing windows are defined sequentially for each unit. Blue segments represent training

periods, while red segments denote test periods.

Figure 2: Cross-validation structure over time and panel units

· · ·

· · ·

· · ·

State1

State2

StateJ

...

Fold 1 Fold 2 Fold K

Time
Training

Testing

Note: Each row corresponds to a panel identity (e.g., State1, . . . , StateJ), and each block illustrates a train-test split

for a given fold. Blue segments indicate training windows; red segments indicate testing windows.

2.6 Forecast Evaluation Framework

We evaluate the forecasting performance of all models over the period 2000 to 2020. Although

the fiscal indicators to be predicted are annual, we leverage the availability of quarterly pre-

dictors to update forecasts in real time as new information becomes available. Specifically, we

focus on nowcasts produced at the end of the first quarter of each year—i.e., when Q1 data is

available but before official annual outcomes are released.

All models are estimated recursively using an expanding window. This setup ensures that

each forecast is based only on information that would have been available at the time of fore-

casting (apart for the data revisions, as we use final vintage data due to the large set of in-

dicators we consider). The expanding window approach also reflects how forecasters update

their models in practice, allowing us to incorporate more data over time, potentially improving

estimation precision—especially for more flexible models that benefit from larger sample sizes.

Following standard practice in the forecasting literature, we assess point forecast accuracy
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using the mean squared error (MSE), computed over the evaluation sample. All results reported

in the next sections refer to out-of-sample performance based on this recursive procedure.

3 Forecasting Performance Across Models and Panel Structures

We now present the results of the forecast evaluation exercise, examining how model choice,

panel structure, and the nature of the target variable affect predictive performance. The analy-

sis begins with aggregate results across states, then moves to more disaggregated and illustra-

tive comparisons, highlighting the respective contributions of model flexibility, cross-sectional

pooling, and mixed-frequency information.

3.1 Aggregate Forecasting Performance

We begin by assessing the overall predictive performance by averaging across all target vari-

ables and states. Our analysis focuses on two key aspects: the performance of different model-

ing approaches and the role of panel structures. To capture the full distribution of forecasting

outcomes across states, variables, models, and panel structures, we present the results using vi-

olin plots. The performance metric is based on the mean squared error (MSE) computed across

these dimensions. Unlike simple bar charts or box plots, violin plots simultaneously display

measures of central tendency, dispersion, and the shape of the distribution, offering a more

comprehensive depiction of the underlying heterogeneity. This choice is particularly relevant

in our context, where cross-sectional and model-driven differences are substantial, and where

capturing the entire distribution of forecast accuracy is crucial for evaluating model robustness.

3.1.1 Impact of Model Specification on Forecast Accuracy

Figure 3 presents the overall distribution of forecasting performance across models, relative to

the RW, averaged over all fiscal variables and states. The results reveal substantial differences

in predictive accuracy depending on the choice of g(·). Machine learning models clearly out-

perform the benchmark UMIDAS forecast, which is the mean of the forecasts resulting from
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the single indicator UMIDAS models. In particular, penalized regressions and neural networks

deliver the strongest overall performance, reflecting their capacity to exploit both sparse and

dense predictive signals in the data. Nonlinear models provide additional gains, particularly

in the tails of the distribution, suggesting their ability to handle complex interactions and het-

erogeneities that are not well captured by linear models. The distribution of MSEs across mod-

els also shows that, while variability exists across states and target variables, machine learn-

ing models generally deliver more stable and concentrated performance than UMIDAS, whose

forecasting accuracy exhibits wider dispersion.

Figure 3: Models’ average performance
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Figure 4 disaggregates the comparison by target variable, highlighting how the gains from

machine learning methods vary across different fiscal outcomes. For total expenditure and

deficit measures (both per capita and as a share of GDP), the improvement over UMIDAS is

particularly pronounced. These results suggest that expenditures and deficits are more diffi-

cult to forecast using simple linear specifications and benefit more from the flexibility offered

by machine learning techniques. In contrast, for total revenues, the relative performance gap

between UMIDAS and machine learning models is smaller, indicating that revenue series may

exhibit more stable or linear dynamics that are adequately captured even by simpler models.
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Figure 4: Models’ performance by variable

UMidas
=0.91
=0.05

Ridge
=0.91
=0.07

Lasso
=0.85
=0.10

SG-Lasso
=0.84
=0.10

RF
=0.93
=0.07

Boost
=0.93
=0.07

NN
=0.91
=0.03

0.6

0.8

1.0

1.2

1.4

M
ea

n 
Sq

ua
re

d 
Er

ro
r

(a) Revenues
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(b) Expenditures
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(c) Deficit per capita
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(d) Deficit in % of GDP

Overall, the disaggregated results reinforce the conclusion that the predictive gains from ma-

chine learning are not uniform across fiscal variables, with the largest benefits appearing for

outcomes that are inherently more volatile or complex to model.

3.1.2 Impact of Panel Structure on Forecast Accuracy

Figure 5 examines the impact of panel structure on forecasting performance, averaged across

all models and target variables. The results show that introducing some form of pooling across

states systematically improves predictive accuracy compared to a no-pooling approach. Both

full pooling (global structure) and clustered pooling (based on regional, political, GDP, or hier-

archical groupings) outperform models estimated separately for each state. This highlights the

benefit of exploiting cross-sectional information to enhance forecasts. Among pooling strate-
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gies, no single structure clearly dominates, although clustered approaches generally provide

slightly better median performance than global pooling. The dispersion of forecast errors is

also reduced under clustered structures, suggesting that partial pooling based on economic or

political similarities offers a good balance between flexibility and the benefits of aggregation.

Figure 5: Average impact of clustering
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Figure 6 disaggregates the role of panel structure by target variable. The advantage of pool-

ing appears particularly strong for deficit measures (both per capita and as a share of GDP),

where clustered pooling strategies such as GDP-based or hierarchical clustering deliver notice-

ably better forecasts than global pooling. This suggests that deficits, which may reflect diverse

fiscal behaviors and exposures across states, benefit from more targeted pooling strategies that

respect underlying economic heterogeneity. For total revenues and expenditures, however, the

differences between pooling structures are less pronounced, and global pooling performs al-

most as well as clustered alternatives. These patterns underscore the importance of adapting

the pooling structure to the nature of the fiscal variable being forecasted: complex and het-

erogeneous outcomes require more flexible cross-sectional modeling than more stable fiscal

aggregates.
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Figure 6: Clustering performance by variable
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(a) Revenues
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(b) Expenditures
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(c) Deficit per capita
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(d) Deficit in % of GDP

3.1.3 Longer forecast horizon

As a complementary exercise, we also evaluate the forecasting performance for the next fiscal

year, using all information available up to the end of the current year (i.e., including predictors

up to Q4 of year t). Figures15 and 16 in the Appendix present results analogous to Figures 3

and 5. Although the overall patterns remain broadly consistent—with nonlinear models and

pooled structures improving forecast accuracy—some differences emerge, particularly in how

model performance varies across fiscal variables.
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3.2 Variables, States, and Key Predictors

While the previous sections have focused on aggregate forecast performance across models,

panel structures, and fiscal variables, such analyses inevitably abstract from the specific dy-

namics at play in individual cases. To complement the global findings, we now turn to a set of

illustrative examples that provide a more granular perspective on the forecasting process.

3.2.1 Nowcasting total revenues

Figure 7 compares the distribution of forecast accuracy, relative to RW benchmark, across U.S.

states for total revenues under two representative modeling strategies. The left panel shows

the MSEs obtained from the benchmark UMIDAS model estimated without pooling (no panel),

while the right panel displays those from the Lasso model with global pooling. The gains from

adopting a machine learning model with cross-sectional pooling are clear: the Lasso × global

combination delivers uniformly lower MSEs across almost all states. The improvement is par-

ticularly pronounced in smaller or more volatile states, where the UMIDAS model exhibits

substantial forecast errors. This supports the earlier conclusion that pooling information across

states stabilizes predictions and that flexible model specifications can better adapt to heteroge-

neous fiscal dynamics.

Figure 7: Nowcasting total revenue: comparison across states

(a) UMIDAS, No panel (b) Lasso, Global

Note: Mean squared forecast errors (MSE) computed across states for total revenue forecasts. Left panel reports results from the UMIDAS

model without pooling. Right panel reports results from a Lasso model with global pooling. Lower MSEs indicate better accuracy.
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Figure 8 reports the ten most influential predictors selected by the Lasso model under the

global structure, along with their descriptions.4 These predictors include both national macroe-

conomic indicators (e.g., GDP growth, industrial production, consumer sentiment) and high-

frequency state-level variables (e.g., employment or wage growth). The prominence of macro

indicators suggests that national economic conditions play a central role in shaping revenue

expectations across states. At the same time, the inclusion of state-specific labor market in-

dicators highlights the model’s capacity to capture local fiscal signals. This mix of predictors

confirms that the strength of the Lasso × global model lies in its ability to combine rich national

information with relevant local dynamics through regularization and pooling.

Figure 8: Nowcasting total revenue: selected predictors
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Percentage of predictors retained: 7.00%

totrev_L1,L2 : lags of the target

ULCBS : Business Sector: Unit Labor Cost 
(Index 2012=100)

DODGRG3Q086SBEA : Personal consumption 
expenditures: Durable goods: Other durable 
goods (chain-type price index)

BUSLOANSx : Real Commercial and Industrial 
Loans, All Commercial Banks (Billions of 
2012U.S. Dollars), deflated by Core PCE

RCPHBS : Business Sector: Real Compensation 
Per Hour (Index 2012=100)

GFDEBTNx : Real Federal Debt: Total Public 
Debt (Millions of 2012 Dollars), deflated by 
PCE

DHLCRG3Q086SBEA : Personal consumption 
expenditures: Services: Health care (chain-
type price index)

RSAFSx: Real Retail and Food Services Sales 
(Millions of Chained 2012 Dollars), deflated 
by Core PCE

WPU0531: Producer Price Index by Commodity 
for Fuels and Related Products and Power: 
Natural Gas (Index 1982=100)

Note: Figure presents coefficient values (in absolute values) of the ten most important Lasso regressors.

3.2.2 Nowcasting total expenditures

Figure 9 compares forecast accuracy for total expenditures across states using two contrasting

approaches: UMIDAS with no pooling and Random Forest with global pooling. As in the rev-

enue case, incorporating pooling significantly improves performance relative to the no-pooling

benchmark. However, the gains appear even larger when switching from UMIDAS to Random

Forest, particularly for smaller and more volatile states. This highlights the advantage of non-

linear models in capturing complex fiscal dynamics that simple linear approaches fail to model

4Since in Lasso model regressors are standardized, the size of the estimated coefficients are directly comparable.
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Figure 9: Nowcasting total expenditures: comparison across states

(a) UMIDAS, No panel (b) RF, Global

Note: Mean squared forecast errors (MSE) computed across states for total expenditures nowcasts. Left panel reports results from the UMIDAS
model without pooling. Right panel shows results from a RF model with global pooling. Lower MSEs indicate better accuracy.

adequately. The RF model not only stabilizes forecasts across states but also substantially re-

duces the dispersion in prediction errors, supporting the earlier finding that nonlinearity and

pooling jointly enhance forecast performance for volatile fiscal variables like expenditures.

Figure 10 displays the ten most important predictors in RF model. Unlike the coefficient

estimates from penalized regressions, variable importance measures how much each predic-

tor reduces impurity across the ensemble of decision trees. The selected predictors encompass

a range of national macroeconomic indicators (e.g., industrial production growth, unemploy-

ment claims) and state-level variables. The prominence of real economic activity indicators

suggests that expenditure forecasts are highly sensitive to contemporaneous macroeconomic

and labor market conditions. Compared to the revenue case, the importance of financial in-

dicators appears somewhat lower, reflecting differences in the drivers of expenditures versus

revenues.

An important additional insight is that several state-specific predictors rank among the most

influential variables, despite being vastly outnumbered by aggregate national indicators in the

dataset. While previous work, such as Gu et al. (2020), proposed creating ex-ante interactions

between state and national variables to address this imbalance, the Random Forest model is

capable of capturing relevant nonlinear interactions endogenously. This ability reduces the

need for explicit feature engineering. Moreover, the stronger role of state-specific variables in
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forecasting expenditures relative to revenues suggests that local economic dynamics are partic-

ularly critical for modeling fiscal spending behavior across states.

Figure 10: Nowcasting total expenditures: selected predictors
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Note: Figure reports the ten most important predictors selected by Random Forests for each fiscal variable, based on mean decrease in R2 score.

3.2.3 Nowcasting deficit as share of GDP

Figure 11 compares the state-level mean squared errors (MSEs) for forecasts of total deficits

as a share of GDP under two modeling strategies: UMIDAS with no pooling and a Neural

Network with GDP-based clustering. Consistent with the patterns observed for revenues and

expenditures, the neural network model yields substantially lower forecast errors across almost

all states. However, the relative gains are particularly striking in this case, with the UMIDAS

model performing poorly for several states—especially those with more volatile fiscal envi-

ronments. This suggests that deficits are more challenging to nowcast using linear, unpooled

models and benefit from both nonlinearity and cross-sectional information sharing.

Taken together, the case studies presented in this section reinforce the aggregate findings by

illustrating how pooling strategies and model flexibility translate into tangible improvements

in forecast accuracy at the state level. Across all fiscal outcomes examined, machine learning

models—especially those incorporating nonlinearity and clustering—consistently outperform

traditional benchmarks. Moreover, the variable importance analyses reveal that effective fore-

casting relies on a combination of national macroeconomic signals and state-specific indicators.
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Figure 11: Nowcasting deficit as share of GDP: across states

(a) UMIDAS, No panel (b) NN, GDP clustering

Note: Mean squared forecast errors (MSE) computed across states for total deficit as a share of GDP nowcasts. Left panel reports results from
the UMIDAS model without pooling. Right panel shows the NN model with GDP clustering case. Lower MSEs indicate better accuracy.

4 A Closer Look at the Forecasting Results

The results presented in the previous section highlight the gains achieved by combining flex-

ible modeling approaches with appropriate panel structures. However, while aggregate per-

formance metrics provide valuable insights, they may mask important variations across states,

variables, models, and pooling strategies. We now study these more granular patterns.

4.1 Quantifying Impacts of Modeling and Panel Structure

To better understand the sources of forecasting accuracy and the statistical significance of dif-

ferences across models, variables, and panel structures, we estimate a linear regression where

the dependent variable is the pseudo-R2 defined at the level of each state i, year t, model m,

target variable v, and panel structure s. The pseudo-R2 is computed as:

R2
i,t,m,v,s = 1 − (yi,t,v − ŷi,t,v,m,s)

2

MSFEconst
i,v

,

where MSFEconst
i,v is the out-of-sample mean squared forecast error of the RW benchmark that

predicts yi,t,v using the historical average of yi,t′,v for t′ < t. 5

5This approach, also known as response surface (Davidson and MacKinnon, 1993, Section 21.7), has been used
in Goulet Coulombe et al. (2022). An alternative would be to adapt the method from Qu et al. (2024) to this
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Since our evaluation period spans two decades, including business cycle turning points and

crisis episodes, we include year fixed effects to account for common variation in forecast diffi-

culty over time. This ensures that comparisons between models, variables, and panel structures

are not confounded by macroeconomic shocks that affect all forecast targets in a given year.

We first estimate the following additive model with year fixed effects:

R2
i,t,m,v,s = α + γm + δs + θv + λt + εi,t,m,v,s, (4)

where γm, δs, θv, and λt are categorical indicators for model class, panel structure, target vari-

able, and year, respectively. All model classes, panel structures, and target variables are in-

cluded in this specification, with the baseline category set to neural network for the model,

pooling global for the panel structure, and revenues for the target variable. The intercept thus

corresponds to the pseudo-R2 for this reference configuration in the base year (2000).

Table 2 reports the estimated coefficients and the associated p-values where the t-stats have

been produced using HAC standard errors. The stars indicate statistical significance levels (∗

for p < 0.10, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01). The interpretation of each coefficient is

relative to the corresponding baseline. For instance, negative coefficients on alternative model

classes imply a lower pseudo-R2 relative to NN model, controlling for the other factors.

The results confirm that the neural network model consistently achieves the highest pseudo-

R2, with most alternative models performing significantly worse. The largest performance gaps

are observed for UMidas, Boosting, and Random Forests, while Lasso and Ridge appear closer

to the benchmark, though without statistical significance in the case of Lasso.

Panel structure also plays a significant role. The pooled version (global) remains the most fa-

vorable, as reflected by significantly negative coefficients for alternative structures such as pre-

dicting states on individual basis, without panel consideration, and regional clustering. This

suggests that pooling across states contributes to forecast accuracy, likely by stabilizing esti-

mation in the presence of limited annual data. Notably, the negative effect of the individual

structure persists even after controlling for year effects, implying that its relative performance

multidimensional setup.
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is not solely driven by crisis periods.

Regarding target variables, forecasting performance is significantly lower for deficits per

capita and deficit as % of GDP, and expenditures compared to revenues. This aligns with the

idea that fiscal expenditure and deficit dynamics may be harder to predict.

Finally, the year fixed effects highlight systematic differences in forecast difficulty across the

sample period. In particular, the financial crisis period (2008–2010) is associated with sharply

lower pseudo-R2, confirming the challenge of forecasting during periods of heightened volatil-

ity. Some rebound is observed in later years, although the coefficients for most post-crisis years

remain negative relative to the early 2000s. Interestingly, the impact of the 2020-COVID is much

smaller than the effect of the Great Recession years (2008-09).

Overall, these results emphasize the importance of model choice, pooling strategy, and tar-

get variable in determining forecasting success. They also underline the value of controlling for

time variation when comparing predictive models in the presence of possible instability.

While the additive specification provides valuable insights into the average marginal effects

of model class and panel structure, it implicitly assumes that these effects operate indepen-

dently. However, it is plausible that certain models may benefit more from specific pooling

strategies, especially in contexts where regularization, nonlinearity, or flexibility interacts with

the amount of available cross-sectional information.

To explore this possibility, we estimate an extended specification that includes interaction

terms between model type and panel structure, capturing the joint effect of model choice and

pooling strategy on forecasting performance. The estimated equation becomes:

R2
i,t,m,v,s = α + θv + ηm,s + λt + εi,t,m,v,s, (5)

where ηm,s denotes the interaction between model and panel structure, and the additive terms

γm and δs are absorbed into the interaction terms. Year and variable fixed effects remain in-

cluded to control for systematic differences across time and target variables.

This interaction framework permits to test whether the relative performance of a given

model depends on the chosen pooling strategy. For instance, models with strong regulariza-
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Table 2: Marginal Predictive Performance: Pseudo-R2 Regression Results

Coefficient Estimate p-value Coefficient Estimate p-value

Constant 0.61∗∗∗ 0.00 year_2001 -0.36∗∗∗ 0.00
UMIDAS -0.10∗∗∗ 0.00 year_2002 -0.39∗∗∗ 0.00
Ridge -0.01 0.19 year_2003 0.12∗∗∗ 0.00
Lasso -0.01 0.49 year_2004 -0.17∗∗∗ 0.00
SG-Lasso -0.03∗∗ 0.01 year_2005 0.18∗∗∗ 0.00
RF -0.05∗∗∗ 0.00 year_2006 0.22∗∗∗ 0.00
Boost -0.08∗∗∗ 0.00 year_2007 -0.11∗∗∗ 0.00
No Panel -0.09∗∗∗ 0.00 year_2008 -1.22∗∗∗ 0.00
Individual -0.10∗∗∗ 0.00 year_2009 -2.72∗∗∗ 0.00
Political -0.02 0.12 year_2010 -0.96∗∗∗ 0.00
Regional -0.04∗∗∗ 0.00 year_2011 -0.22∗∗∗ 0.00
GDP -0.02 0.11 year_2012 -1.35∗∗∗ 0.00
Hierar(2) 0.00 0.80 year_2013 0.08∗∗∗ 0.00
Hierar(4) -0.03∗∗∗ 0.00 year_2014 0.13∗∗∗ 0.00
Expenditures -0.08∗∗∗ 0.00 year_2015 -0.04∗∗ 0.01
Deficit/cap. -0.05∗∗∗ 0.00 year_2016 -0.03 0.11
Deficit %GDP -0.09∗∗∗ 0.00 year_2017 -0.18∗∗∗ 0.00

year_2018 0.16∗∗∗ 0.00
year_2019 0.21∗∗∗ 0.00
year_2020 -0.26∗∗∗ 0.00

Notes: This table reports linear regression results from equation (4), estimating the marginal effects of model type, panel structure, target vari-
able, and year dummies on pseudo-R2 performance. Coefficients are relative to the baseline category: NN model, Global panel structure, Rev-
enue target, and year 2000. Standard errors are HAC-robust. Asterisks denote significance levels: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

tion such as Lasso should benefit more from global pooling than from individual estimation,

due to better stabilization of coefficient estimates. In contrast, flexible nonparametric models

like Random Forests may be less sensitive to the choice of panel structure.

The results, illustrated in Figure 12, provide a clearer comparison of model robustness across

different panel structures. Each group of bars represents a specific forecasting model, allow-

ing us to observe how its performance changes depending on the pooling strategy. Neural

networks consistently achieve high adjusted pseudo-R2 values across most panel structures,

particularly under global, GDP-based, and hierarchical pooling. This suggests that nonlinear

models benefit from information sharing but are also robust to structural variation across states.

Lasso and sparse-group Lasso exhibit greater sensitivity to panel structure. Lasso reaches its

peak performance under hierarchical pooling (Hierar), but its accuracy drops under individual
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or no-panel settings. This pattern confirms that regularization alone is not sufficient without

some form of cross-sectional pooling. UMIDAS and Ridge tend to underperform across the

board, especially under more fragmented structures. Meanwhile, tree-based methods like Ran-

dom Forests (RF) and Boosting exhibit stable but slightly lower predictive accuracy, indicating

flexibility across structures but less overall gain from pooling.

This visualization reinforces the idea that forecasting accuracy depends jointly on model

complexity and the degree of pooling. Nonlinear models—particularly neural networks—appear

most robust, whereas linear regularized models require the support of appropriate panel struc-

tures to realize their full potential.

Figure 12: Pseudo-R2 by model and panel structure

Note: Adjusted pseudo-R2 values are obtained from regression (5). Each group of bars corresponds to a model, and colors indicate the panel

structure used. The pseudo-R2 is computed from out-of-sample forecasts and adjusted for the number of predictors.

4.2 Forecast Optimality: Evaluating Bias and Informational Efficiency

To assess whether forecasts are unbiased and well-calibrated, we implement the Mincer-Zarnowitz

regression (Mincer and Zarnowitz, 1969) at the state level:

yi,t,v = α[m,s] + β[m,s]ŷi,t,v + FEv,t + εi,t,v, (6)
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where yi,t,v denotes the realized value, ŷi,t,v is the forecast, and fixed effects FEv,t capture both

fiscal variable identity and year effects. The regression is estimated separately for each model

m and panel structure s, with HAC-corrected standard errors.

The Mincer-Zarnowitz regressions (6) test two core conditions for forecast optimality: un-

biasedness (i.e., α = 0) and informational efficiency (i.e., β = 1). The latter condition is often

interpreted as verifying whether the forecast incorporates all available information in a propor-

tional and undistorted way. However, it is important to note that the regression evaluates the

response of the realized value to the forecast ŷi,t,v—that is, to the transformation of available

information through the forecasting model. A slope β̂ < 1 implies underreaction to predictive

signals, while β̂ > 1 reflects overreaction. We also report the p-value from a joint Wald test of

H0: α = 0, β = 1, offering a summary measure of overall forecast optimality.

Table 3 presents the detailed results, broken down by model and panel structure. Each

model–structure pair yields estimates for α̂ and β̂, with statistical significance denoted by stars.

The joint p-value allows us to identify cases where forecasts are jointly biased and inefficient.

The results reveal several key patterns. First, UMIDAS, Lasso, and Sparse-Group Lasso pro-

duce forecasts that are systematically attenuated relative to the realized values, as evidenced

by β̂ ≪ 1 and strong rejections of the efficiency hypothesis across all pooling strategies. These

models also tend to exhibit positive and significant bias terms, particularly under partial pool-

ing (e.g., Political or Regional). Despite strong regularization, their predictive signals appear

overly dampened, suggesting underutilization of available variation in the data.

In contrast, neural networks generally produce β̂ > 1, suggesting strong reactions to input

signals. However, they also tend to have negative α̂, indicating an average upward bias in their

forecasts. This overreaction–offset pattern hints at a different kind of inefficiency: while the NN

model fully exploits variation in predictors, they may overshoot due to nonlinearities not fully

aligned with the true data-generating process. Still, joint tests for optimality are not rejected in

many configurations involving structured pooling (e.g., Global, Hierar(2)), underscoring their

relative robustness.

The Random Forest and Boosting models show milder deviations: they often exhibit slopes
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Table 3: Mincer-Zarnowitz Test Results by Cluster Grouping

UMIDAS Ridge Lasso SG-Lasso RF Boost NN

No Panel
α̂ 0.02 0.01 0.02 0.02 0.01 0.01 -0.02
β̂ 0.49∗∗∗ 0.82 0.67∗∗∗ 0.45∗∗∗ 0.76∗ 0.79∗∗ 1.70∗∗

p-value 0.00 0.24 0.00 0.00 0.21 0.14 0.11
Global
α̂ 0.03∗ 0.03∗ 0.02 0.03∗ 0.01 0.01 -0.02
β̂ 0.30∗∗∗ 0.72 0.82 0.38∗∗∗ 0.63∗∗∗ 0.70∗ 1.47∗

p-value 0.00 0.11 0.31 0.00 0.01 0.16 0.22
Regional
α̂ 0.03∗ 0.02∗ 0.02 0.03∗∗ 0.02 0.01 -0.01
β̂ 0.26∗∗∗ 0.79 0.80 0.50∗∗∗ 0.49∗∗∗ 0.54∗∗∗ 1.46∗

p-value 0.00 0.13 0.19 0.00 0.00 0.00 0.20
Political
α̂ 0.03∗ 0.03∗ 0.01 0.04∗∗ 0.01 0.01 -0.01
β̂ 0.27∗∗∗ 0.62∗∗ 0.64∗∗ 0.51∗∗∗ 0.59∗∗∗ 0.62∗∗ 1.50
p-value 0.00 0.04 0.14 0.00 0.00 0.05 0.23
GDP
α̂ 0.03∗ 0.03∗ 0.02 0.03∗ 0.02 0.01 -0.03
β̂ 0.29∗∗∗ 0.65∗∗ 0.66∗∗ 0.56∗∗∗ 0.54∗∗∗ 0.55∗∗∗ 1.67∗

p-value 0.00 0.02 0.07 0.00 0.00 0.00 0.23
Hierar(2)
α̂ 0.03∗ 0.03∗ 0.02 0.04∗∗ 0.00 0.01 -0.00
β̂ 0.28∗∗∗ 0.72 0.74 0.40∗∗∗ 0.85 0.69∗∗∗ 1.34
p-value 0.00 0.10 0.27 0.00 0.47 0.02 0.46
Hierar(4)
α̂ 0.03∗ 0.03∗ 0.02 0.03∗∗ 0.01 0.01 -0.02
β̂ 0.27∗∗∗ 0.66∗∗ 0.58∗∗∗ 0.58∗∗∗ 0.67∗∗∗ 0.66∗∗∗ 1.40
p-value 0.00 0.03 0.00 0.00 0.00 0.00 0.27
Individual
α̂ – 0.01 0.01 0.02 0.01 0.01 -0.02
β̂ – 0.90 0.79 0.53∗∗∗ 0.79∗ 0.79 1.36∗

p-value – 0.65 0.32 0.01 0.22 0.32 0.25
Note: Each cell reports the estimate of α̂ (bias term), β̂ (efficiency term), and the p-value from the joint test H0 : α = 0, β = 1. Asterisks
denote significance of individual tests: ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01. All standard errors are HAC-corrected.

below one, similar to the linear models, but with smaller bias terms and fewer rejections of

the joint null. These tree-based models seem to balance flexibility with regularization more

effectively when combined with richer pooling structures.

Finally, the individual and no-panel specifications almost always lead to significant depar-

tures from the benchmark of forecast optimality—especially for linear models—highlighting
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the importance of borrowing strength across states through pooled estimation.

4.3 Testing for Conditional Heteroskedasticity in Forecast Errors

Heteroskedasticity is a frequent feature in linear models, in particular with a small number

of regressors, while the added flexibility of nonlinear models and/or a large information set

can reduce its extent. While the White test (White, 1980) is traditionally applied to in-sample

residuals to detect conditional heteroskedasticity, we implement it here on the out-of-sample

forecast errors êi,t,v = yi,t,v − ŷi,t,v. This is justified by our interest in identifying whether the

dispersion of prediction errors varies systematically with the magnitude of the forecast itself,

and also by the fact that, under correct specification, the forecast errors should be a function of

the unobservable future model errors.

Formally, we estimate the following regression separately for each combination of model m

and panel structure s:

ê2
i,t,v = c[m,s] + θ1,[m,s]ŷi,t,v + θ2,[m,s]ŷ

2
i,t,v + µi,t,v, (7)

and test the null hypothesis H0: θ1,[m,s] = θ2,[m,s] = 0. A rejection suggests that the variance

of forecast errors is conditionally heteroskedastic, i.e., systematically related to the level of the

predicted value. In each regression, we control for fixed effects at the variable × time level to

absorb structural shifts across fiscal indicators and macroeconomic periods. This ensures that

the test is sensitive only to variance instability conditional on the forecast itself, not to scale

differences across targets or years. All standard errors are HAC-corrected.

The results, reported in Table 4, indicate that forecast errors from UMIDAS models are con-

sistently heteroskedastic across all panel structures, as the null is strongly rejected in each case.

This reflects the relative rigidity of UMIDAS specifications, which lack mechanisms to adapt the

variance of their forecast errors across the range of predicted outcomes. Among linear machine

learning methods, Ridge, Lasso, and sg-Lasso display mixed results: in simple panel structures

such as No Panel or Global, the test is usually rejected, whereas more granular structures like
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Individual or Hierarchical yield higher p-values, suggesting greater error stability. These find-

ings indicate that pooling and regularization do help stabilize prediction dispersion, but only

when the panel structure is sufficiently fine.

Tree-based models such as Random Forests and Boosting also show signs of heteroskedas-

ticity in most configurations. This is not entirely surprising, as these methods can overfit local

patterns, including in the tails of the distribution, thereby amplifying forecast variance in ex-

treme regions. That said, some configurations involving hierarchical pooling mitigate this issue,

particularly in the case of Boosting, where p-values rise under more structured panels.

The most robust model remains the neural network, for which the null of homoskedasticity

is not rejected in several settings. Notably, under global pooling, the White test yields a p-value

of 0.43, and values larger than 0.10 are observed under other specifications, such as Hierar(2)

and Hierar(4). This suggests that neural networks, despite their high flexibility and potential for

overfitting, can produce stable forecast dispersion when paired with appropriately structured

pooling. These results reinforce the findings from earlier tests of forecast optimality: neural

networks may overreact in terms of slope, but they produce forecast errors with more stable

variance properties, especially when panel structure is well calibrated.

Table 4: White Test p-values for Conditional Heteroskedasticity in Forecast Errors

Model No Panel Global Regional Political GDP Hierar Hierar4 Individual

UMIDAS 0 0 0 0 0 0 0
Ridge 0.02 0 0 0 0 0 0 0.02
Lasso 0.25 0 0 0 0 0.03 0.01 0.03
SG-Lasso 0.11 0 0 0 0 0 0 0.10
RF 0 0 0 0 0 0.02 0 0.05
Boost 0.09 0.04 0 0 0 0.01 0 0.13
NN 0 0.43 0.16 0.14 0 0.12 0.17 0.11

Notes: Each cell reports the p-value from a White test for conditional heteroskedasticity applied to out-of-sample forecast errors. The test
regresses squared forecast errors on predicted values and their squares, controlling for fixed effects at the variable × time level. The null
hypothesis is that forecast error variance is not systematically related to the level of the forecast. A low p-value indicates evidence of mis-
specification in the conditional variance.
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5 Conclusion

This paper studies the nowcasting and short-term forecasting of U.S. state-level fiscal variables

by leveraging machine learning methods in a panel and mixed-frequency environment. Using

a rich dataset of quarterly macroeconomic and financial indicators alongside annual fiscal out-

comes, we systematically evaluated the predictive performance of several modeling strategies,

focusing on the role of model flexibility, pooling structures, and the nature of fiscal targets.

Our findings suggest that combining mixed-frequency information with machine learning

techniques substantially improves forecasting performance relative to traditional econometric

models. Nonlinear machine learning models such as random forests, boosted trees, and neural

networks consistently outperform benchmark specifications, especially for more volatile fiscal

variables like expenditures and deficits. Moreover, incorporating panel structures—either via

full pooling or through clustering across economically meaningful dimensions—delivers addi-

tional gains by efficiently exploiting cross-sectional information.

A key insight from our analysis is that predictive gains are heterogeneous across fiscal

variables and depend on both model flexibility and the choice of pooling strategy. Forecast-

ing expenditures and deficits particularly benefits from nonlinear methods and partial pooling

approaches, while revenues are comparatively easier to predict and show smaller differences

across models. Through forecast error diagnostics, we further show that nonlinear models are

better at mitigating cross-sectional nonlinearities.

Finally, disaggregated case studies demonstrate that these improvements are not driven by

a few states but are broadly shared across the panel, and that state-specific economic condi-

tions play an important role in driving forecast performance. This highlights the advantage of

flexible models capable of capturing both national and local dynamics.

Overall, our results suggest that mixed-frequency panel machine learning models are pow-

erful tools for timely fiscal monitoring at the state level. They offer a promising avenue for

improving the responsiveness and accuracy of fiscal surveillance frameworks, particularly in

an environment characterized by economic heterogeneity and rapid information flows.
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A Neural Network Embedding

Figure 13: Embedding Layer
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Note: This figure illustrates the embedding lookup process. Categorical input indices i ∈ {1, . . . , 48} are first mapped into dense vectors

ei ∈ RD via an embedding matrix E ∈ R48×D , where D denotes the embedding dimension. In practice, the lookup is computed as a row

selection or equivalently as ei = 1⊤i E, using a one-hot vector 1i ∈ R48. The output vector is then passed through a dense layer with weights

W ∈ RD×K and bias b ∈ RK , producing vtm = eiW + b ∈ RK , where K is the number of output units.
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B Clusters

Figure 14: Clusters

(a) Regional (b) Political

(c) GDP (d) Hierarchical
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C Forecasting results

Figure 15: Forecasting: models’ performance

Figure 16: Forecasting: panel structure performance
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