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Résumé / Abstract

Règle de taxation permettant de réaliser l'optimalité pour un oligopole
polluant. On considère une industrie oligopolistique dans laquelle la production
s'accompagne d'émissions de pollution qui s'accumule pour former un stock. Dans
ce modèle, les firmes se livrent une concurrence à la Cournot. Le gouvernement
propose une règle de taxation pour corriger à la fois l'effet de la concurrence
imparfaite et l'externalité négative due aux émissions de pollution. On montre qu'il
existe une règle de taxation qui ne dépend pas explicitement du temps et qui amène
les firmes à choisir le sentier de production socialement optimal. Le taux optimal de
taxation d'unité de production dépend du niveau du stock de pollution et peut être
négatif (une subvention) pour des niveaux faibles du stock de pollution. On obtient
un résultat qui peut sembler surprenant à première vue: il peut être optimal de
subventionner la production pour au moins une période de temps, même si la
production de la situation de laisser-faire (sans intervention) est à chaque instant
au dessus du niveau de production socialement optimal. Malgré la subvention, les
firmes réduisent leur production par rapport à la situation de laisser-faire afin de
prolonger la période de subvention et retarder le moment o\`u la subvention se
transformerait en taxe. 

We derive corrective tax rules when firms are oligopolists whose
production processes generate emissions that add to a stock of pollution that
accumulates over time. In our model, firms play dynamic Cournot games among
themselves, and the government designs a tax rule that corrects for both the
externality associated with emissions and the market power of oligopolists. We
show that there exists a time-independent tax rule that guides the oligopolists to
achieve the socially optimum production path. The optimal tax per unit of output
is dependent on the current level of the pollution stock, and it may be negative
(implying a subsidy) when the pollution stock is low. We obtain a rather
surprising result: in some cases, the optimal tax rule gives firms a subsidy for an
initial time interval even though under laissez-faire their output exceeds the
socially optimal output at each point of time. This subsidy, however, induces firms
to produce less than they would under laissez-faire, because they know that if
they produce more then the subsidy will be reduced in the future and/or will soon
turn into a tax.
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1 Introduction

When �rms' production process generates pollutants as a byproduct,

this externality must be corrected. Among the methods of correction

advocated by economists are (i) imposing pollution standards, (ii) tax-

ing polluting �rms, (iii) requiring �rms to buy pollution permits, (iv)

relying on bargaining between the �rms and the injured party, and (v)

threat of litigations. All these methods have well- known advantages

as well as drawbacks. For example, an oligopolist might purchase all

or most of the permits, thus improving its market share and possibly

leading to monopolisation of the industry1. Bargaining and litigations

may involve considerable transaction costs. Taxation and standards may

require information that the regulator does not possess.

In this paper, we do not take a position on the choice of policy in-

struments. Our aim is to characterize the optimal tax rule when the

emission of pollutants by �rms causes present as well as future damages

because the stock of pollution accumulates over time. Speci�cally, we

assume that �rms are oligopolists, so that each �rm does realize that

the future actions of its rivals depend on its own present action. Firms

maximize their long-run pro�t, anticipating both the actions of their

rivals, and the future tax rates that re
ect future environmental dam-

ages. We are able to show that even if �rms play dynamic games among

themselves, it is possible to construct tax rules that achieve e�ciency.

By considering the taxing of polluting oligopolists in a dynamic context,

we depart from the static oligopoly framework used in Katsoulacos and

Xepapadeas (1992) and Kennedy (1994).

The optimum tax rule must send to �rms the message that the more

they pollute now, the higher will be their future tax liability. The pa-

rameters of the tax rule, however, depend on how �rms interact with

each other in a dynamic Nash equilibrium: they may play an open-

loop game, or a closed-loop game. This distinction will be explained

below. We show that in both cases, there exists a corresponding time-

independent tax rule that guides the oligopolists to achieve the socially

optimum time paths of production and pollution. The optimal tax per

unit of output is dependent on the current level of the pollution stock,

and it may be negative (implying a subsidy) when the pollution stock

is low. We obtain a result that might at �rst seem puzzling: in some

cases, under the optimal tax rule, �rms receive a subsidy for some initial

time interval even though under laissez-faire their output exceeds the

1See Newbery (1990, pp. 344-345), von der Fehr (1993), Sartzetakis (1996), Long

and Soubeyran (1997), among others. La�ont and Tirole (1996a,b) address some

asymmetric information issues associated with pollution permits.
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socially optimal output at each point of time. This subsidy, however, in-

duces �rms to produce less than they would under laissez-faire, because

they know that if they produce more then the subsidy will be reduced

in the future and/or will soon turn into a tax. Upon re
ection, this is

an instance of \ the carrot and the stick" policies.

The literature on regulating (or taxing) �rms in a dynamic context

consists mainly of two streams. The �rst one focuses on informational

issue without paying much attention to the problem of stock accumula-

tion2. The second stream deals with stock dynamics and assume per-

fect information3. In addition, there are a few articles that link the

two streams4. The present paper belongs to the second stream. In its

concern with e�ciency-inducing taxation, it is inspired by the models of

Bergstrom, Cross and Porter (1981)- to be referred to as BCP- and Karp

and Livernois (1992, 1994). BCP deal with the design of a tax scheme in

the case of a monopoly that exploits an exhaustible resource. They de-

rive an intuitively appealing family of tax/subsidy schedules that ensure

e�cient output level. Karp and Livernois (1992) show that the BCP

rules, being time-dependent, are subject to strategic manipulation by

the monopolist if the government is unable to commit to the entire se-

quence of tax rates. In other words, the BCP tax rules are not subgame

perfect. Karp and Livernois (1992) propose instead a linear Markov per-

fect (LMP) tax rule which ensures subgame perfection and induces the

monopolist to produce the e�cient output level.

The case of oligopoly is more complicated, because of intertemporal

strategic interaction among �rms. The only dynamic model of a pollut-

ing oligopoly that we are aware of is Karp and Livernois (1994). They

restrict attention to the case in which the regulator does not seek to

maximize welfare, but only aims at reducing aggregate emissions to an

2See Baron (1989), Besanko and Sappington (1987) on the designs of regulatary

mechanisms under limited information (i.e. there is at least one variable that the reg-

ulator cannot observe) using the revelation principle, which is central to such designs.

La�ont and Tirole (1988) show that when there is learning (informational dynamics)

the revelation principle breaks down in the absence of commitment. Sappington and

Sibley (1988) show that if pro�ts can be observed with one-period lag, then using

the incremental surplus subsidy (ISS) scheme, the regulator can induce a monopolist

to produce the e�cient output level even if the regulator does not know the �rm's

cost function. In the case of a monopolist that extracts from a stock of exhaustible

resource, Karp and Livernois (1992) show that ISS must be supplemented by an exit

tax.
3For regulating a monopoly, see Bergstrom, Cross and Porter (1981), and the

�rst part of Karp and Livernois (1992). Farzin (1996) addresses dynamic aspects of

pollution tax under the assumption of perfect competition.
4See Karp and Livernois (1992), (1994), Gaudet, Lassere and Long (1995, 1996a,

1996b).
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exogenously speci�ed target level. Furthermore, in their model there is

no stock of pollution; the state variable in the model is the tax rate

that gets adjusted when actual emission di�ers from the target level.

Our model is di�erent in two respects: �rst, the government seeks to

induce the e�cient time path of pollution; second, the stock of pollu-

tion accumulates with emissions. By having the tax rate conditioned on

the stock of pollution, our model has more on common with Karp and

Livernois (1992), but that paper deals with a monopolist extracting a

non-renewable resource while we are concerned with an oligopoly that

impacts on a renewable resource (the quality of the environment); this

oligopolistic struture introduces new strategic elements. On the other

hand, we assume perfect information, while Karp and Livernois (1992)

also consider the case of imperfect information.

Before deriving the optimal tax rule, we start with the case where

the government announces from the outset an arbitrary tax rule, and we

show how �rms respond to this tax rule while playing a non-cooperative

game among themselves.We focus on linear Markov tax rule, that is,

the tax bill at any time t depends only on the current levels of output

and pollution stock, and it is linear in the �rm's output, though not

necessarily linear in the pollution stock.

We study two types of equilibria, which di�er on the information

�rms use to condition their actions. In the open-loop Nash equilibrium

(OLNE), each �rm chooses, right at the beginning of the game, its time

path of production (and hence emission), taking as given the time paths

chosen by other �rms. In the Markov Perfect Nash Equilibrium (MPNE),

each �rm chooses a feedback strategy, that is, a decision rule which

conditions its output at any time t on the level of the pollution stock

observed at that time5. Both types of equilibria are time-consistent, in

the sense that if all �rms follow their strategies, then at each point in

time no �rm will have an incentive to deviate. A requirement that is

stronger than time-consistency is `subgame perfection'. It is known that

the MPNE is subgame perfect but the OLNE is not6.

While subgame perfection is a very important criterion for equilib-

rium selection, especially because it eliminates Nash equilibria that are

made possible only by non-credible threats, this does not mean that

OLNE should be discarded. In many simultaneous-move games where

agents are symmetric (such as the oligopoly game considered here), `un-

reasonable' equilibria brought about by non-credible threats do not arise.

5This structure is often referred to as the closed-loop information structure; see

Fudenberg and Tirole (1991, Sections 4.7 and 13.3), for further discussion.
6For further explanation of these concepts and several interesting examples, see

Karp and Newbery (1993).

3



Furthermore, as Fudenberg and Tirole (1991, p.131) point out, OLNE

\serve as a useful benchmark for discussing the e�ects of strategic incen-

tives in the closed-loop information structure."

In this paper, we compare the OLNE with the MPNE, and show

that the optimal tax rules in the two equilibria take similar forms, but

with di�erent parameter values. In both cases, the �rst best pollution

path is shown to be achievable by an appropriate linear Markov tax rule.

The correct parameters for the tax rules depend on whether �rms choose

open-loop or Markov strategies. Thus our results indicate that informa-

tional problems facing the government are not restricted to the task of

�nding out the true damage function, demand curve and cost parame-

ters; the government must also �nd out whether �rms use open-loop or

Markov strategies, or perhaps guide �rms in their choice of strategies.

In Section 2, we describe the basic model and characterize the social

optimum. The corrective tax rules are derived in Sections 3 and 4 for

the open-loop and feedback cases respectively. Section 5 o�ers some �nal

remarks.

2 The Basic Model

We consider an oligopoly consisting of n identical �rms that produce a

homogeneous good. Each �rm has a constant unit cost c � 0. Let qi
denote �rm i's output. Industry output is Q =

P
qi and the inverse

demand function is P = P (Q), with P 0 < 0 and P (0) > c. The amount

of pollutant emitted by �rm i is ei = �qi where � > 0. Without loss

of generality, we set � = 1. Let S � 0 denote the stock of pollution.

Following Forster (1973) we assume that the dynamics of the pollution

stock obeys the law
_S(t) = Q(t)� �S(t) (1)

where � > 0 is rate of decay of the pollution stock.

The social welfare at time t is assumed to be of the separable form

W (t) = U(Q(t))� cQ(t)� 
D(S(t)) (2)

where 
D(S) � 0 is the damage function representing the harm caused

by the stock of pollution. The parameter 
 � 0 allows us to do com-

parative statics and to consider the polar case where the pollution does

not a�ect welfare, i.e. 
 = 0. We take U(Q) to be the area under the

demand curve:

U(Q) =

Z Q

0

P (Z)dZ
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It is assumed that the function D(S) is strictly convex, and that the

marginal damage is negligible if the stock of pollution is zero:

D(0) = 0; D0(0) = 0; D0(S) > 0 for S > 0; D00(S) > 0:

As we will see below, this assumption ensures that there is a unique

and positive steady state level of pollution under the central planning

scenario.

The aggregate welfare is de�ned as the integral of the discounted

stream of W (t):

V =

Z 1

0

W (t)e�rtdt (3)

where r > 0 is the rate of discount.

The Social Optimum

Before describing the behaviour of �rms, let us �nd out what is the

optimum solution if �rms can be directly controlled by a benevolent `so-

cial planner'. This, of course, is only a theoretical benchmark case, and

should not be taken as our endorsement of direct control of production

by any central agency. The social planner chooses the time path of the

industry output, Q(t), so as to maximize (3) subject to _S = Q� �S and

the given initial condition S(0) = S0. This is a standard optimal control

problem with an in�nite horizon7. Let � denote the shadow price of the

pollution stock. It will be shown that � is negative along the optimal

path. The necessary conditions are

P (Q)� c+ � � 0; Q [P (Q)� c+ �] = 0 (4)

_� = �(� + r) + 
D0(S) (5)

_S = Q� �S (6)

and the transversality condition is

lim
t!1

e�rt� (t)S(t) = 0 (7)

When Q is strictly positive, (4) and (5) yield the following condition

P 0(Q) _Q = � _� = (r + �)[P (Q)� c]� 
D0(S) (8)

7See, for example, L�eonard and Long (1992) for the solution techniques for this

type of optimal control problems.
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From (6) and (8) the steady state can be determined. There exists a

unique optimal steady state level of the pollution stock, denoted by bS1,

and a corresponding steady state output level

bQ1 = � bS1 (9)

where bS1 satis�es the following equation

P
�
� bS1� = c+


D0
�bS1�

r + �
(10)

This condition says that, at the steady state, the consumers' valuation of

the marginal unit of output must be equal to its production cost plus the

present value of the stream of marginal damage caused by the additional

pollution generated by it.

It can be shown that, starting with any initial pollution stock S0 <bS1 the optimal time path of S is monotone increasing, approaching bS1
as t tends to in�nity. The associated time path of production Q(t) is
positive and monotone decreasing8 if 
 > 0, approaching Q1 asymp-

totically. If S0 > bS1 then the optimal time path of S is monotone

decreasing and Q is monotone increasing except possibly for some initial

time interval where there is no production, and this happens only if S0
is very great, say S0 > S where S is a large number. It follows that

for all initial condition S0 � 0 the optimal output at any time t can be

expressed as a function of the optimal stock level S at t. We denote this

functional relationship, for all S � 0, as Q = bQ(S) � 0, with

bQ0(S) < 0 if S < S and 
 > 0; bQ(S) = 0 if S � S (11)

bQ�bS1� = � bS1 (12)

This functional relationship will be referred to as the `feedback control

rule'. It describes the optimal control rule in the feedback form: given the

current level of the stock, the optimal current production Q is uniquely

determined9.

The linear-quadratic case

Consider the special case where the function P (Q) is linear and the

function D(S) is quadratic,

P (Q) = P (0)� bQ; P (0)� c � a > 0 (13)

8If 
 = 0 then Q(t) is constant over the whole time horizon.
9Technically, the function Q(S) thus described represents the stable branch of the

saddle-point in the (Q;S) phase diagram.
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and


D(S) =

S2

2
for S � 0; 
 > 0 (14)

The steady state is bS1 =
a(r + �)

(r + �)b� + 

(15)

And the feedback control rule bQ(S) can be shown to be linear and de-

creasing in S:

bQ(S) = bQ1 + �[S � bS1] = �S + (� � �)bS1 (16)

where � is a negative root of the quadratic equation

�2 � (r + 2�)�� (
=b) = 0 (17)

Remark: Strictly speaking, (16) holds only for 0 � S � S, where

S = bS1 �
bQ1
�

> bS1
and bQ = 0 is S > S.

Oligopolistic Behavior

We now return to the market economy scenario. Firms are not sub-

ject to direct control from a central government agency. They are free to

choose their output levels. However they have to pay taxes. We restrict

attention to the case where each �rm's tax bill at time t is a function of

its current output level qi(t) and of the size of the pollution stock S(t).
Furthermore, we assume that \equals must be treated equally": all �rms

face the same tax rule10:We denote �rm i's tax bill at time t by

Ti = T (S(t); qi(t)) (18)

where the functional form T (:; :) is the same for all �rms. This tax rule

contains S as an argument because we would expect the government to

want �rms to internalize the social cost they cause by their emission

of pollutants. In what follows, we consider only rules that are linear

in output: T (S; qi) = �(S)qi; in other words, we restrict attention to

stationary Markov tax rules that are linear in output. These are called

10It may be optimal to treat equals unequally. See Long and Soubeyran (1997). In

the present paper we impose the requirement that equals must be treated equally, to

re
ect the fact that in many societies, discrimination is illegal.
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linear Markov (LM) tax rules. We could have dealt with a more general

class of tax rules. For example, a tax rule could state the tax rate as

function of the calendar time, which would permit us to look at the case

where the government can precommit to a time path of non-constant

tax rate. In fact, Bergstrom, Cross, and Porter (1981), in dealing with

e�ciency-inducing tax for a monopolist mining �rm, assume that the

per unit tax rate � is a function of time alone. However, as pointed

out by Karp and Livernois (1992), if the government cannot precommit

to its announced time path of tax rate, any tax rule that depends on

calendar time is subject to strategic manipulation by the monopolist (in

our case, the oligopolists) and will not achieve e�ciency. For this reason,

we restrict attention to tax rules that are independent of time.

Firm i's pro�t at time t is

�i(t) = P [qi(t) +Q�i(t)]qi(t)� [c+ �(S(t))]qi(t) (19)

where Q�i(t) denotes the sum of the outputs of all other �rms. We

assume that �rms take a long view and therefore do not maximize short-

run pro�t. Each �rm realizes that its output at t will add to the pollution
stock, and thus a�ect its future tax liability. Firm i's objective function
is to maximize its long-run pro�t, de�ned as the value �i of the stream

of discounted short-run pro�ts:

�i =

Z 1

0

�i (t) e
�rtdt (20)

We seek to characterize the Nash equilibria of the game for a given

tax rule, and then �nd the optimum tax rule. As one would expect, this

depends on the type of Nash equilibrium under consideration. In the

next two sections, we examine two types of equilibrium: open-loop Nash

equilibrium (OLNE) and Markov Perfect Nash Equilibrium (MPNE).

3 Corrective Tax in an Open-loop Nash Equi-

librium

In the open-loop formulation, the strategy space for each �rm is the set of

all possible time paths of its output, and each �rm must choose right at

the beginning of the game (at t = 0) its entire time path qi(:). An open-

loop Nash equilibrium (OLNE) for the industry is a set of chosen time

paths, q1(:); :::; qn(:), such that each �rm's chosen time path maximizes

its long-run pro�t, given the time paths chosen by other �rms. Any �rm

can at any time t > 0 revise its time path, but whenever it contemplates

8



a revision, it continues to assume that all other �rms will stick to their

originally chosen time paths qj(:), j 6= i. In the literature on open-loop

Nash equilibrium, it has been proved that along the equilibrium play,

at no time a �rm can gain by departing from its initial plan. In other

words, open-loop Nash equilibria are time-consistent. (See Karp and

Newbery (1993) for a discussion of the time-consistency issue.)

In what follows, we describe the open-loop Nash equilibrium of the

pollution game. At time t = 0, the government announces the per unit

tax rule �(S) that is applicable to all �rms, at all time. By de�nition, in

an OLNE each �rm has the correct forecast of the time paths of output

of all other �rms. Firm i's chosen time path must be the solution of the

following optimal control problem

max

Z 1

0

fP (Q�i + qi)� c� �(S)gqie
�rtdt

subject to
_S = Q�i + qi � �S (21)

and qi � 0, S(0) = S0. Here, Q�i(t) is taken as given.

Let �i be the shadow price of the pollution stock in �rm i's optimal

control problem. The necessary conditions for an interior maximum are

(21) and

P � c+ qiP
0 � �(S) = ��i (22)

_�i = �i(r + �) + qi�
0 (23)

The transversality condition is

lim
t!1

e�rt�i (t)S(t) = 0

We will consider only symmetric equilibria, where all �rms behave

identically. Obviously if the tax function is independent of S (� 0 is zero
identically, and hence � = k a constant), then no �rm will care about

the pollution stock and hence �i = 0; in this case we obtain the usual

static oligopolistic equilibrium, and the industry output is a constant

over time. If � = 0 identically then Q(t) = Q where

P (Q) + (Q=n)P 0(Q) = c (24)

We call Q the laissez-faire level of output. If the per unit tax rate does

depend on S then � is non-zero. From (22) and (23):

P 0

n
[n+ 1�R] _Q = [P � c� � +

Q

n
P 0](r + �) + [ _S �

Q

n
]� 0 (25)

9



where R � �QP 00=P 0 is the elasticity of the slope of the demand curve,

which is assumed to be less than n+1; this assumption is a familiar sta-

bility condition in static oligopoly theory, see Dixit (1986), for example.

From (25) the steady state pollution stock in an OLNE, denoted by Sol1,

must satisfy the following condition

P (�Sol1) = c+ �
�
Sol1

�
+

�
�Sol1
n

� "
� 0
�
Sol1

�
r + �

� P 0(�Sol1)

#
(26)

Substituting Q = _S + �S and _Q = �S + � _S into (25), we obtain a second

order di�erential equation in S. We choose the solution that leads to

the steady state, that is the point ( _S; S) = (0; Sol1): The OLNE may be

represented by a pair of time paths for the stock S(t) and the output

Q(t), and we denote their steady state values by Sol1 and Qol
1. In the

(S;Q) space, this pair (S(t); Q(t)) can be represented by a function Q =

Qol(S) which may be called the `feedback representation' of the OLNE.

(See the appendix for an example of such a feedback representation.)

Our task is to design a tax rule �(S) such that the socially optimum

time path of pollution can be \decentralized" as an OLNE of the dynamic

game played by the oligopolists. The following proposition characterizes

the optimal tax rule:

Proposition 1 (Optimal tax rule for OLNE: the general case)

Suppose that �rms use open-loop strategies, and the government

wishes to design a tax rule that guides them to achieve the socially

optimal path bQ(S): The optimal tax rule �(S) is the solution of the

following linear di�erential equation

�(S) +A(S)� 0(S) = B(S) (27)

with the boundary condition

P (� bS1) = c+ �
�bS1�+

"
� bS1
n

#2
4� 0

�bS1�
r + �

� P 0(� bS1)

3
5 (28)

where

A(S) =
n�S � (n� 1) bQ(S)

n(r + �)

and

B(S) = P � c�
cQ
n
P 0 +

bQ0(S)[ bQ(S)� �S](n+ 1� nR)P 0

n(r + �)

10



Proof

Recall that bQ(S) denotes the feedback control rule that achieves the

social optimum in the planning problem of Section 2. We want to �nd

a tax rule b� (S) such that the feedback representation of the OLNE is

identical to bQ(S). This is achieved if (i) the pair f bQ(S); b� (S)g satisfy

equation (25) and (ii) b� (bS1) satis�es the steady-state condition for an

OLNE, equation (28). Condition (i) means that the following equation

must be satis�ed:

P 0

n
[n+ 1�R]

d bQ(S)
dt

= [P�c��(S)+
cQ
n
P 0](r+�)+[

dbS
dt
�
cQ
n
]� 0(S) (29)

where P = P ( bQ(S)) , R = R( bQ(S)), and P 0 = P 0( bQ(S)): Replacing
dbS=dt by bQ(S) � �S and d bQ(S)=dt by bQ0(S)[ bQ(S) � �S ] in (29), we

obtain a �rst order linear di�erential equation in � as described in the

statement of Proposition 1. The di�erential equation (27) has the general

solution

�(S) = K exp

"Z S

0

�A(eS)deS
#
+ �p(S) (30)

where �p(S) is a particular solution of (27), and K is a constant. This

constant is determined by the boundary condition (28).2

Proposition 2: (Optimal tax rule for OLNE: the linear-quadratic case).

Under linear demand and quadratic damage cost, the following tax

rule guides oligopolists to achieve the social optimum as an OLNE:

�(S) = �� + ��S (31)

where

�� =
(n+ 1)


n(r + 2�) + (1� n)�
� 0 (32)

and

�� =
[n
 � b(r + �)� � (nr + n� + �)��] bS1

n(r + �)
(33)

where �� > 0 if 
 > 0; @��

@n
> 0 if 
 > 0; @�

�

@

> 0; @�

�

@r
< 0; @�

�

@

< 0,

and � can be positive or negative, and � is the negative root of equation
(17).

Proof : We want to show that the di�erential equation (27) has a

solution of the form �(S) = � + �S. Substitute � + �S for �(S) in (27),

where bQ(S) is given by (16). Collect all terms that have S as a common

factor. Since the di�erential equation must hold for all S � 0, the sum

11



of these terms must be zero. Thus we obtain the required expression for

��, which is (32) above. (In obtaining this, we have also made use of

(17) for the relationship between � and 
.) Substitute this expression for
�� into the collection of terms not involving S. This gives (33). These
values also satisfy the boundary condition (28). It can be veri�ed that

the necessary and su�cient conditions for an OLNE are satis�ed. To

obtain the partial derivative of ��, we �rst substitute � into (32) to get

�� =
2


(2� + r) +
h
n�1
n+1

i
[(r + 2�)2 + 4(
=b)]

1=2

Remark: The tax rule (31) consists of two components: an `autonomous'

component �� that is independent of the pollution stock, and a `pollution-
induced' component, ��S.

It is natural that �� is positive if 
 > 0. The partial derivatives of ��

reported in Proposition 2 also make sense. Thus, the more �rms there

are, the greater is the tendency for each �rm to ignore the e�ect of its

output on the indutry's future tax bill. To counter this incentive, we

have to increase ��, that is, a greater weight is given to S in the tax

function when n is large.

From Proposition 2, �� can be positive or negative, depending on

parameter values. To see this more clearly, re-write �� as

�� =

�
z(n)
 �

b(r + �)�

n

� bS1
r + �

(34)

where

z(n) = 1�
2(r + � + (�=n))

r + 2� +
h
n�1
n+1

i
[(r + 2�)2 + 4
=b]

1=2
(35)

In (34), the �rst term , z(n)
, contains the damage parameter 
 while

the second term does not. Note that z(1) < 0 , and z (n) is a increasing
function, with limn!1 z(n) > 0: Therefore � < 0 if n is small (for

example n = 1); but for n su�ciently great, we have �� > 0. Again,

this accords with intuition: If there are just a few �rms, then when

the stock of pollution is low, an output subsidy is optimal, because the

under-production due to market power outweighs the tendency for over-

production associated with negative externality. If there are many �rms,

then it is never optimal to subsidize outputs.

A somewhat surprising result emerges: even in the case where the

laissez-faire output exceeds the socially optimal one at all point of time,

12



it may still be optimal to pay �rms a subsidy for some initial interval

of time, when the stock of pollution is low. (That is, �(S) = �� + ��S
is negative for S su�ciently small.) This subsidy, however, does not

induce �rms to produce more than their laissez-faire output, because

they know that the greater is their output, the quicker is the rate at

which the subsidy falls, and if the stock of pollution becomes su�ciently

great, � will become positive, that is, the subsidy will turn into a tax.

In order to receive the subsidy, and to prolong the subsidized phase,

�rms have an incentive to reduce output below the laissez-faire level.

We record this as a proposition.

Proposition 3 (A subsidy that reduces output)

If the damage parameter 
 is su�ciently great, then it can be optimal

to subsidize �rms when the stock of pollution is small, even though their

laissez-faire output exceeeds the social optimum at all t. This subsidy

induces �rms to reduce their output below the laissez-faire output.

Proof

It su�ces to consider the linear-quadratic case. The laissez-faire

output (that is, in the absence of tax or subsidy) is Q = na=[b(n+ 1)].

Since bQ(S) is decreasing in S, Q exceeds the social optimum output for

all value of S if and only if Q > bQ(S) at S = 0; that is, if and only if�
2n

n+ 1

��
1 +




�b(r + �)

�
>
�
(r + 2�)2 + 4(
=b)

�1=2
� r (36)

This is sati�ed for 
 su�ciently great and both � and r are small. If

z(n) in (35) is negative (for example, if n =1) then �(S) < 0 for small

S:2

4 Corrective Tax in a Markov Perfect Nash

Equilibrium

We now turn to the case where �rms choose Markovian strategies rather

than open-loop strategies. A (stationary) Markovian strategy for a �rm

is a decision rule that determines its output at time t as a function of

the observed size of the pollution stock at t: qi(t) = �i(S(t)). Under

these strategies �rms are not committed at the outset to any given time

path of their outputs. A Markov perfect Nash equilibrium is a set of

decision rules �1(:); :::; �n(:) such that each �rm's decision rule is the

best response to those of its opponents.

Suppose �rm 1 knows that all other �rms use Markovian strategies.

Then its optimal response �i(:) is the solution of an optimal control
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problem. Firm 1 knows that the actual outputs of its opponents at time

t depends (indirectly) on its output q1 (t
0) for all t0 < t via its e�ect

on the stock S(t). Firm 1's optimal solution is then a function of the

decision rules of its opponents. Given these decision rules, the solution

of �rm 1's optimal control problem determines its output at any time t
as a function of S(t). We denote this function as q1(t) = �1(S(t)). The
function �1(S) is thus a stationary Markovian strategy.

As in Section 3, we assume that the government announces at time

t = 0 a tax rule. For simplicity, we will consider only a per unit tax that

depends only on S: � = �(S). Let

Q�i(S) =
X
j 6=i

�j(S)

Firm i's optimal control problem is

max

Z 1

0

�i(t)e
�rtdt

where

�i(t) = P [Q�i(S) + qi] qi � [c+ �(S)] qi

The constraints are
_S = Q�i(S) + qi � �S (37)

and qi � 0, S(0) = S0. The Hamiltonian is

H = P [Q�i(S) + qi] qi � [c+ �(S)] qi + �i [Q�i(S) + qi � �S] (38)

Restricting attention to interior solutions, we obtain the following nec-

essary conditions for this optimal control problem:

P + qiP
0 � c� �(S) = ��i (39)

_�i = �i

h
r + � �Q

0

�i(S)
i
+ qi�

0(S)� qiP
0Q

0

�i(S) (40)

We now seek to characterize symmetric MPNE, where for all j; qj =

�(S). Substitute this into (39), and di�erentiate the resulting expression
with respect to t :

[(n+ 1)P 0(n�(S)) + n�P 00]�0(S) _S � � 0(S) _S = � _� (41)

Combining this equation with (40), we obtain a di�erential equation in

�

[�0(S) (�(S)) � � 0(S)] [n�(S)� �S] = � [�(S); �(S); �0(S); � 0(S)] (42)

14



where

 [�(S)] � (n+ 1)P 0(n�(S)) + n�(S)P 00(n�(S))

and

� � [P + �(S)P 0 � c� �(S)][r + � � (n� 1)�0] + �(S)[(n� 1)P 0�0 � � 0]

Given the tax rule � , a symmetric MPNE that admits a steady-

state is a solution to the di�erential equation (42) with the `boundary

condition'

n�(S1)� �S1 = 0 (43)

where S1 is unspeci�ed. We are interested in a MPNE that gives rise

to a converging time path of S. The following proposition shows that

such a MPNE can be easily computed in a special case.

Proposition 4 : Assume linear demand and quadratic damage cost. If

the tax rule is linear, �(S) = � + �S, where � > 0, then there exists

a unique symmetric MPNE in linear strategies, �(S) = g � hS , with

g > 0; h > 0;that ensure the convergence of S(t) to a steady state.

Proof: See the Appendix.

Remark: Since best replies to linear strategies are linear, we are not

imposing the requirement that, in responding to the linear strategies of

its rivals, a �rm is restricted to the set of linear strategies.

Proposition 5 :(Optimal tax rule for MPNE : the general case) Under

general (non-linear) demand and damage function, a tax rule that guides

the �rms to achieve the social optimum path as a symmetric MPNE is

the solution of the following linear di�erential equation:

�(S) +E(S)� 0(S) = F (S) (44)

with the boundary condition

h
P ( bQ1)� c� �(bS1)

i
=

h
� 0(bS1)� (r + �)P 0( bQ1)

i bQ1h
n(r + �)� (n� 1) bQ0(bS1)

i (45)

where

E(S) �
n�S � (n� 1) bQ(S)

n(r + �)� (n� 1) bQ0(S) (46)

and

F (S) � P � c+
1

n
bQP 0 � P 0cQ0

"
(n+ 1�R)( bQ� �S)� n�1

n
bQ

n(r + �)� (n� 1) bQ0(S)
#

(47)
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Proof: Omitted. The method is similar to that used in the proof of

Proposition 1.

Proposition 6 :(Optimal tax rule for MPNE: the linear-quadratic case)

For the linear-quadratic case, the optimal tax that guides �rms to achieve

the social optimum path as a MPNE is

�(S) = ��� + ���S (48)

where

��� =
(n+ 1)
 + (n� 1)b�2

n(r + 2�)� 2(n� 1)�
> 0 (49)

and

��� =

�



r + �
�
�b(r + �) + (nr + n� + � + n�� �)���

n(r + �)� (n� 1)�

� bS1 (50)

Remark

It can be veri�ed that if n > 1 then ��� < �� of the open loop case.

The proof consists of showing that ��� is decreasing in n for n > 1, and

noting that if n = 1 then ��� = ��: On the other hand, one can show

that ��� � ��, with equality holding only if n = 1. These results are

intuitively plausible. If there is only one �rm, (n = 1), then OLNE is the

same as MPNE. If n � 2, then in an OLNE each �rm thinks its rivals

will not react to any increase in pollution caused by its increased output.

That explains why the government must set �� at a value greater than

its MPNE counterpart ���.

5 Concluding remarks

We have shown that one can �nd a tax rule that guides oligopolists

to achieve the socially optimal time path of pollution. The tax rule is

time-independent and therefore does not give rise to dynamic inconsis-

tency. At low pollution levels, the tax can be negative, even when the

laissez-faire output exceeds the optimal output at each point in time. In

such cases, the �rms receiving the subsidy actually have an incentive to

produce less than the laissez-faire output. This is because they want to

delay the time when the subsidy automatically turns into a tax.

In the case of linear demand and quadratic damage cost, the optimal

tax rule turns out to be very simple, and intuitively appealing. It is

linear in the pollution stock, and contains only two components, an

\autonomous" one which is independent of the pollution stock, and a

\pollution-induced" component. It may be argued that if the economy

16



is near an optimal steady state, then the linear- quadratic case is a good

approximation,

In our formulation, to facilitate comparison of our model with the

intertemporal models of Bergstrom et al. (1981) and Karp and Livernois

(1992), we have assumed that the marginal cost of public fund is unity.

An obvious extension would be to allow this cost to exceed unity. A

more di�cult task would be to introduce asymmetry of information into

our intertemporal framework. This is part of our research agenda.

A Appendix

Open-loop Nash equilibrium : the linear-quadratic case

Take any arbitrary pair (�; �) with � � 0, and let �(S) = � + �S:
Substituting this into (25) and writing Q = _S + �S and _Q = �S + � _S
, we obtain a second order di�erential equation in S. This yields the

characteristic equation �2 +E� + F = 0 where

E = �r +
(n� 1)�

(n+ 1)b

and

F = ��(r + �)�
�

b

�
� +

rn

n+ 1

�

We choose the negative root, denoted by �ol, to obtain the solution that

leads to the steady state, that is the point ( _S; S) = (0; Sol1): The steady
state pollution stock is

Sol1 =
a� �

�b(1 + 1

n
) + �(1 + �

n(r+�)
)

(51)

and the equilibrium evolution of S is

S(t) = Sol1 + (S0 � Sol1) exp(�olt) (52)

Since Q = _S + �S, the equilibrium strategy for �rm i is

qi(t) =
1

n

�
�Sol1 + (� + �ol)(S0 � Sol1) exp(�olt)

�
(53)

where (�+�ol) < 0. The feedback representation of the OLNE is obtained

from (52) and (53):

Q(S)�Qol
1 = (� + �ol)(S � Sol1) (54)
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Markov-Perfect Nash equilibrium : the linear-quadratic case

Using the \undetermined coe�cient technique" (see Ferhstman and

Kamien (1987), Dockner and Long (1994)) we obtain a unique MPNE in

linear strategies that ensure convergence to a steady state. The method

is outlined below.

Given the tax rule �(S) = �+�S, where � > 0, and a�� > 0, let us

suppose that �rm i assumes that all other �rms use a linear Markovian

strategy qj(S) = X + Y S. (Since � > 0, we expect Y to be negative in

a symmetric MPNE; this will be con�rmed later.) Firm i's pro�t is

�i = [a� b (qi + (n� 1)(X + Y S))] qi � (� + �S)qi (55)

Let Vi(S) be �rm i's value function. The Bellman equation is

rVi(S) = max
qi

[�i + V 0i (S) (qi + (n� 1)(X + Y S)� �S)] (56)

Try Vi(S) =
1

2
AS2 + BS + C, where A;B and C are to be determined.

Maximizing the right-hand side of (56) with respect to qi yields

a� � � �S � b(n� 1)(X + Y S)� 2bqi +AS +B = 0 (57)

In a symmetric equilibrium, qi = qj = X+Y S. Substitute this into (57)
to obtain

Y =
A� �

b(n+ 1)
; X =

a� � +B

b(n+ 1)
(58)

Substitute (58) into (56) to obtain an identity which holds for all S.
Collecting the terms that have S2 as a common factor, we obtain a

quadratic equation in A

2n2A2 � [2�(1 + n2) + b(n+ 1)2(2� + r)]A + 2�2 = 0 (59)

This equation has two real roots

A1;2 =
1

4n2

�
2�(1 + n2) + b(r + 2�)(1 + n)2 �

q
Z + [b(r + 2�)(1 + n)2]

2

�

where

Z = 4�2(n2 � 1)2 + 4�(1 + n2)b(n+ 1)2(r + 2�) > 0

It can be shown that the smaller root, say A1, is smaller than �. This is
the one we select to ensure that Y < 0 (and that B < 0; and a��+B > 0,

see below).
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Next, collecting the terms that have S as a common factor, we obtain

a linear equation in B, which gives

B =
(a� �)

�
(n2 + 1)A1 � 2�

�
b(r + �)(n+ 1)2 + �(1 + n2)� 2n2A1

< 0

(It can be shown that denominator of B is positive and the numerator

of B is negative.)

Having found A and B; we obtain the equation

_S = nX � nY S � �S =
n [a� � +B]

(n+ 1)b
+ �MS

where

�M �

�
�� +

n(A1 � �)

(n+ 1)b

�
< 0

and it can be veri�ed that a � � + B > 0.The steady state stock of

pollution in a MPNE, denoted by SM1 , is:

SM1 =
n [a� � +B]

[�b(n+ 1)�M ]
> 0

The equilibrium Markov-perfect strategy is

qi(S) =
1

n
�SM1 +

1

n
(� + �M )(S � SM1 )

This gives rise to the equilibrium industry output

Q(S)� �SM1 = (� + �M )(S � SM1 )

This is readily comparable with the feedback representation of the OLNE

given by (54).2
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